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ABSTRACT

This dissertation explores how mental models of data influence visualization design.

A mental model of a dataset is the user’s understanding of the data, encompassing

their prior experiences, interests, and knowledge of the data. In this dissertation,

I demonstrate how the flexibility of mental models can allow for changes in the

visualization, while paradoxically the inflexibility of personal mental models indi-

cates designers should prioritize aligning the visualization with the mental model.

To connect the internal (i.e., mental models) with the external (i.e., data visualiza-

tions), we suggest using data abstractions to link the mental model to a data-related

structure. This gives the user and designer a common language to start from and

guides visualization design.

Choosing the data abstraction has been recognized as an important part of the

design process, but this abstraction is typically based on the data itself, not on

users’ mental models of the data. Mental model research has been centered around

mental models that arise after seeing a visualization and how users utilize their

mental models of the existing visualization. This dissertation addresses this gap

in the visualization design methodology from three perspectives: (1) how mental

models of data are created from non-tabular data without prior visualizations, (2)

describing data abstractions and exploring alternatives, and (3) how changing data

abstractions requires changing the visualization to fit the mental model.

I first describe a design study of a tree visualization in which my collaborators

and I considered changing the data abstraction to fit the data, but ultimately chose

the abstraction that fit our users’ mental models. Second, I explore types of data

abstractions, how they are related, and the effects of changing data abstractions.

Finally, I investigate how different mental models can arise from the same dataset

via a study involving sketching non-tabular data. I conclude by asking how to

better facilitate these discussions of mental models before and during a visualization
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design study. Understanding and formalizing what questions to ask to elicit useful

descriptions of mental models will allow designers to create visualizations that better

suit users’ mental models of the data.
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CHAPTER 1

Introduction

Visualization designers typically focus on the design of external representations of

data, e.g., charts and graphs that users take in and interpret to gain an understand-

ing of a dataset. However, there is an important piece that visualization designers

often leave unexplored: their users’ internal data representation, i.e., their mental

model of the dataset [69, 62]. A user who regularly interacts with the same or

similar data has a mental model of the data, encompassing their background knowl-

edge on the subject, intuition, and knowledge about the underlying structure of the

data and possible connections. Even a user approaching a novel dataset will have

experiences, knowledge, and expectations that shape how they look at the dataset.

Since the user is an expert on navigating the dataset, they can provide examples

for the visualization designer, warn when data values are illogical, and explain how

they make decisions using the data. All of these facets of information are useful

for the visualization designer, helping them avoid data errors and understand the

tasks the user prioritizes. By simply basing the visualization design process on the

dataset, visualization designers are missing out on the wealth of expertise in their

users’ mental models.

Mental models of visualizations have gained significance and discussion in recent

years. Liu and Stasko reviewed cognitive science and HCI literature to develop a

definition of mental models in the context of information visualization [91]. They

define a mental model as “a functional analogue representation to an external in-

teractive visualization system.” Prior work describes how users construct mental

models of external representations, like multi-view visualizations [131] or a photo-

sharing website [137], and suggests ways to measure mental models of information

visualizations [92]. Work by Lewis in 1986 even provides guidelines for how to ef-

fectively construct mental models of tasks performed on computers [88]. Extensive

work by Götschi and Sanders et al. evaluates students’ mental models of recursion

[52, 128, 130], assessing how well teaching methods help students build accurate
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mental models of recursion. These mental models are all internal representations of

external visualization systems, or rely on external visualizations and instruction to

develop a mental model of a concept. In this dissertation, we begin by discussing

mental models of concrete visualizations, then move toward more abstract represen-

tations of data until we end with mental models that arise from data in paragraph

form, without any existing visualization.

Even when the datasets are identical, two people viewing the data will not create

the same mental models. Each individual has a unique background on the subject of

the dataset, prioritizes different attributes, and connects with various aspects of the

data. Both users have unique perspectives about the data — what data points and

tasks are interesting, what connections between points are significant, and how to

meaningfully group the data. These differences create tension between two mental

models, which is not necessarily bad or good. The commonalities between the mental

models may connect two users and the differences may be areas of discussion and

exploration.

Tension also exists between the imagined mental model and how the mental

model can be physically represented in relational databases, spreadsheets, or other

types of data storage. A data abstraction is a mapping of domain-specific data to an

abstract data type [104], e.g., course data can be mapped to a table or to a network.

It may be beneficial to identify the data abstraction that is most similar to the user’s

mental model, and then explore known transformations of the data abstraction to

find a middle ground between what most aligns with the mental model, yet is also

a practical way to store and interact with the dataset.

Choosing the data abstraction has been recognized as an important part of both

the data design step [102] and the visualization design process [103]. Still, this

abstraction is typically based on the data itself, not on users’ mental models of the

data. Bigelow et al. emphasize that designers need to be able to define and modify

data abstractions to match their users’ mental models [10]. A poor choice of data

abstraction can delay progress and the final visualization may not end up supporting

the user’s needs [103].
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This dissertation explores how mental models and data abstractions influence

visualization design. Specifically, my collaborators and I demonstrate how the flex-

ibility of data abstractions can allow for changes in the visualization, while para-

doxically the inflexibility of personal mental models indicates we should prioritize

the abstraction that most closely matches the mental model. Our overarching re-

search goal is to find ways to align the data abstraction and visualization design

with the user’s mental model. Problems arise when we do not, causing conflicts

when discussing how to collect, store, and visualize the data.

This dissertation addresses this gap from three perspectives: (1) how we maintain

the mental model in a visualization among changing data and abstractions; (2)

describing existing data abstractions and exploring alternative, uncovered yet useful

data abstractions (what we call latent data abstractions); (3) what kinds of data

abstractions appear in mental models when these mental models arise from non-

tabular data.

In chapter 3, I describe our design study that resulted in Atria, an interactive

tree visualization. Atria is used for performance analysis of task-parallel programs,

a specific type of runtime used for distributed computing on high-performance sys-

tems. We discovered well into the construction of Atria that we had misjudged our

underlying data abstraction — what we thought was a tree was instead a graph. We

describe how we adapted the design study methodology [133] to the “moving target”

of both the data and the domain experts’ concerns and how this movement kept

both the visualization and programming project healthy. We explain how our over-

arching team goal helped us and our collaborators remain motivated and navigate

our incorrect abstraction choice.

Next, in chapter 4, we study types of data abstractions, how they are related,

and the effects of changing data abstractions. We set out to uncover how malleable

data abstractions are and to better understand the process of pursuing latent data

abstractions. A data abstraction is considered latent when the data abstraction is

meaningful and useful, yet undiscovered. It has yet to be fully elucidated, communi-

cated, documented, and formatted. We surveyed and interviewed a wide assortment
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of data workers about how they classify their data, selecting one of six abstractions.

We then asked them to consider their data in an alternative data abstraction, ex-

ploring how the qualities of the data would change and how their analysis would

change. We used grounded theory methodology to generate codes and themes from

the responses. Our choice of data abstraction typology framed the topic for our

participants, eliciting rich communication and reflection about data. We provide

guidelines for developing data abstractions and for probing latent data abstractions.

Finally, in chapter 5, we investigate “data elephants”, an analogy we use to il-

lustrate how people can create different mental models from the same non-tabular

dataset. In semi-structured interviews, participants were given one of three datasets

and were asked to draw their mental model of the data. We discussed with partic-

ipants their sketch and mental model, the source of their idea, and whether their

mental model of the dataset evolved during drawing. We used the principle of sur-

prise and saturation, critical components of grounded theory, to guide the questions

asked in our interviews and the direction of our study. Our participants used di-

verse language and abstractions to represent their mental model; this diversity was

influenced by several factors including recent examples the participant had seen,

imagined purpose-seeking tasks, and their definition of what “data” is.

1.1 Contributions

This dissertation makes the following contributions:

• A design study of how to proceed in the face of a shifting data abstraction

and changing data needs.

• Guidelines for pursuing and revealing latent data abstractions when visualiza-

tion designers collaborate with data workers.

• Implications for visualization designers on eliciting and understanding their

user’s mental model.
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At the end of each chapter, I include a“Family and Friends Summary” as a way

to make this dissertation accessible to those who love and support me the most.

For academic readers, this section is optional. It summarizes the chapter in a more

casual way.

Family and Friends Summary: When you read or view a dataset, you have your

own background and intuitions about the data and subject matter. We call this

unique viewpoint your mental model of a dataset. Trouble and confusion arise when

a visualization of the dataset uses a data abstraction (i.e., an underlying structure

of the dataset) that does not match your mental model. In this dissertation, I

show how my collaborators and I had to change data abstractions but kept the

overall visualization in alignment with our users’ mental models. I then discuss how

malleable these data abstractions are: can we change from one data abstraction to

the other? How helpful is this change? Finally, I connect these data abstractions to

sketches of mental models and how our participants think about data.

1.2 Reproducibility Table

To embrace completeness and transparency, I make my collected data, code, and

analysis process available to other researchers to support reproducibility of my meth-

ods. Table 1.1 contains links to the code repositories and data repositories used in

the making of this dissertation.

Project (Chapter) Resource Location
Visualizing a Moving Target: A Design Study
on Task Parallel Programs in the Presence of
Evolving Data and Concerns (chapter 3)

Atria tree visualization code https://github.com/hdc-arizona/traveler-tree

Traveler dashboard: subsequent work incorporating
Atria tree visualization by Sakin et al.

https://github.com/hdc-arizona/traveler-integrated

Guidelines for Pursuing and Revealing
Data Abstractions (chapter 4)

Interactive collection of survey responses https://alex-r-bigelow.github.io/wrangling-survey/Responses.html

Repository of codes, themes, and supplemental material https://osf.io/382fn/

Data Abstraction Elephants: The Initial Diversity
of Data Idioms and Mental Models chapter 5

Collection of interview transcripts and sketches https://osf.io/kvnb9/

Repository of codes https://github.com/kawilliams/mental-models-codes

Jamboard https://kawilliams.github.io/papers/elephants_supplemental/Jamboard.pdf

Table 1.1: A list of the raw data and resources used in this dissertation, including
their url locations. Additional information and supplemental material for each paper
can be found at my personal website: https://kawilliams.github.io/

https://github.com/hdc-arizona/traveler-tree
https://github.com/hdc-arizona/traveler-integrated
https://alex-r-bigelow.github.io/wrangling-survey/Responses.html
https://osf.io/382fn/
https://osf.io/kvnb9/
https://github.com/kawilliams/mental-models-codes
https://kawilliams.github.io/papers/elephants_supplemental/Jamboard.pdf
https://kawilliams.github.io/
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CHAPTER 2

Related Works

For this dissertation, I returned to several works on design studies, task abstractions,

and data abstractions. These works are described in detail in this section and are

referenced in chapters 3, 4, and 5. Relevant related work that is specific to each

chapter is located in the Related Work section of that chapter (e.g., chapter 3

contains Related Work on execution graph visualizations).

2.1 Design Study and Task Abstraction

Throughout this dissertation, discussions of data abstractions and mental models

are primarily to benefit visualization experts in the early stages of the design study

framework [133]. Sedlmair et al. define a design study as “a project in which visu-

alization researchers analyze a specific real-world problem faced by domain experts,

design a visualization system that supports solving this problem, validate the design,

and reflect about lessons learned in order to refine visualization design guidelines.”

Key in this process is the gain for both the domain experts and the visualization

researchers: the visualization becomes a deliverable for the domain experts and

the process becomes guidance for the visualization community. The design study

methodology consists of a nine-stage framework. These stages are learn, winnow,

cast, discover, design, implement, deploy, reflect, write (for a complete description

of each stage, see the original work [133]). The authors describe pitfalls that may

occur within each stage of the framework. The framework is not strictly a linear

progression through steps; instead, it incorporates and encourages full cycles and

sub-cycles in the design study process. I primarily use this framework to situate our

work in 3 and chapter 5.

During the design stage in the design study framework, the visualization designer

generates data abstractions, visual encodings, and interaction mechanisms to use in

the visualization. I elaborate on data abstractions below in section 2.2. The choices
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made by the visualization designer are based on the tasks that the user intends

to accomplish through using the visualization. To bridge low-level visualization

tasks to more complex goals, researchers have proposed compositions of tasks and

hierarchical task analysis with visualization task abstractions [84, 3, 4, 18, 87, 123,

126]. Task abstractions help visualization designers understand the tasks their users

want to prioritize and reinforce how the design of the visualization can accomplish

these tasks. In the design study of Atria, my collaborators and I linked our tasks to

goals in multiple levels, similar to Zhang et al. [162] (see Figure 3.2).

Throughout the design study of Atria (chapter 3), my co-authors and I relied

on flexibility and collaboration for our success, even though we embarked on the

project in the face of known pitfalls [133]. We built Atria as a simple and adaptable

technology probe [63]; this drove discussions about what data needed to be collected

and aspects of the data that had not been clarified. We deployed our probe in diverse

technical and practical contexts with the runtime and performance teams, creating

a parallel, multi-channel collaboration environment like that described in detail by

Wood et al. [157].

2.2 Data Abstractions

Prior to any visualization, data workers actively work with data and this process

impacts how the data arrive to the visualization expert. Muller et al. [102] describe

five stages that data workers apply when working with data: discovery, capture,

curation, design, and creation. This work focuses on designing data, specifically the

data abstraction [98].

A data abstraction is a mapping of domain-specific data to an abstract data type

[104], e.g., power station supply lines can be mapped to a network. A latent data

abstraction is an alternative abstraction of the same data that has yet to be elu-

cidated and may provide a different, useful perspective, e.g., power station supply

lines as a table displaying amounts of power produced. Feinberg observes that the

mere use of a dataset makes the user a designer of its abstraction [42], even if users
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are unaware of the inherent flexibility in the dataset. The designers used this flexi-

bility in graph abstractions and creativity when encoding genome sequences for the

ABySS-Explorer [108]. Likewise, I describe how we demonstrated this malleability

through a study in chapter 4. Communicating about data abstractions is difficult

[119] since the user may not understand how to describe the tasks they want to

perform or the goals they are trying to accomplish. Discussions about options for

the dataset and abstraction should happen early in the design study process and

should be frequently re-examined by the domain experts to ensure correctness and

cohesion with their mental model of the problem [133].

The visualization designer may need to modify the abstraction based on their

understanding of how the user interacts with the data and the tasks they are trying

to accomplish. Often there is not a single correct abstraction; instead abstractions

must be designed [98, 102] to best suit the user’s needs. When designing data, too

much focus on a single data abstraction has been observed to limit creativity [10].

Consequently, there is a need to learn to develop a “data vision” to exercise discretion

and creativity in designing abstractions [112].

Creativity workshops can help avoid a single-minded pursuit of a data abstract

and encourage multiple perspectives [51, 77]. Prior work in creative visualization

workshops and collaborative prototyping provide a framework for facilitating ex-

ploring alternative, useful design ideas [77, 39, 40]. As such, sketching is a low-cost,

popular method and one that we use in our study in chapter 5; I provide an overview

of prior uses of sketching in visualization below (section 2.3).

2.3 Mental Models and Sketching

A person’s mental model is their a personal understanding of a topic that may

consist of representations of objects, background knowledge about the topic, and

connections to related topics. In our context, a mental model of a dataset includes

the person’s knowledge of the contents, prior experience working with the dataset,

and their intuition about the data and relationships within the dataset. Originating
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in cognitive science [69], mental models have been explored in human-computer

interaction and visualization [14, 55, 92, 131, 137]. Liu and Stasko reviewed the

literature and defined mental models in the context of information visualization [91].

Research on mental models of multi-view visualizations [131], social networks [137],

and even the concept of recursion [52, 128] have all been examined. While a diverse

range of topics, these mental models all start as external images, from visualizations

to lectures with slides to diagrams. Mental models can evolve, like when learning

the new topic of recursion, or through interaction with the subject, like when users

interact with and understand a visualization system [14]. These prior works focus

solely on the mental model that is created after viewing an existing visualization–

we are concerned with mental models created from the dataset before viewing any

influencing abstractions or visualizations.

Perceiving external representations, such as visualizations or self-generated

sketches, allows people to think more powerfully than without those representations

[152]. Bartram et al. found that data analysts’ annotations within spreadsheets

allowed users to gain a closer understanding of the data through the analytics pro-

cesses and augmented sense-making [5]. Externalizing our thoughts allows people

to work through operations that are too complicated to do internally, handle more

complicated structures, and run processes more quickly and with more precision

than when executed strictly internally [79].

Sketching is a simple way to externalize inner thought processes and mental

models, such as students’ concepts of time [44] or homeowners’ concepts of their

home wireless network [118]. Understanding the language of diagrams and how we

visualize our thoughts [143] enables us to successfully collaborate and share visu-

alizations. In collaborative environments, sketches can be created spontaneously

on whiteboards or paper during brainstorming, thinking, communicating, and gen-

eral problem-solving [148, 124]. Alternatives to sketching and to using Microsoft

Excel, such as tangible tokens [61, 60, 158] or personal physicalizations using craft

supplies [138], have also been proposed as ways to quickly visualize datasets with

minimal instruction.
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Family and Friends Summary: I define components of the visualization design pro-

cess, specifically the design study methodology. A design study is a data visualiza-

tion project that not only produces a useful visualization tool for the users, but also

generates insights and knowledge for the visualization designer to share with the

visualization research community. The design study methodology is a framework for

conducting a design study, which includes guidance before the visualization design,

during the data and visualization creation, and in the post-project analysis phase.

Once the visualization designer has the data, they select a data abstraction to guide

the construction of the visualization. A data abstraction is a generalized framework

of data (e.g., a table) rather than a specific dataset (e.g., a table of foods and their

caloric and nutritional breakdowns). A visualization designer knows of several tools

and techniques for each kind of data abstraction so the ability to generalize from a

specific dataset to a general data abstraction makes for less work for the designer.

In this dissertation, we consider trying to match the data abstraction with the user’s

mental model, rather than solely with the data. A person’smental model of a dataset

is the combination of their knowledge about the data, their prior experience working

with the dataset, and their intuition about the dataset. With the table of food

example, even though the data might be presented in a tabular data abstraction,

the user might prefer thinking of the food data in groups, like breakfast foods,

vegetables, or vegetarian options. Thus, a grouped data abstraction may best fit

the user’s mental model, which calls for different visualization design choices.
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CHAPTER 3

Visualizing a Moving Target: A Design Study on Task Parallel Programs in the

Presence of Evolving Data and Concerns

I begin this discussion of mental models and data abstractions with a concrete

example. In this design study, the user’s mental model helped ground an ever-

changing visualization design. In this chapter, I discuss how my collaborators and I

designed a tree visualization throughout shifting data concerns. These shifts meant

we had to continuously adapt our tree visualization design and implement feedback

from our users. I started prototyping data visualizations using a small tree dataset

example of the execution of a computer program. However, construction of our

tree visualization was momentarily halted when our collaborators notified us that

what we thought were trees were actually graphs. In computer programs, functions

call smaller, sub-functions and these caller-callee relationships typically form a tree.

However, recursive functions can occur, meaning an edge in the tree returns to its

root node, turning the tree into a graph. From a visualization design perspective,

this change in data abstraction from a tree to a graph would have implications for

the layout of the graph layout and would break the existing visualization program.

During brainstorm sessions of different design options, we learned that our users

primarily think of the data as a tree and implicitly understand where graph edges

may occur. They had been using the tree visualization in their workflow and appreci-

ated the cleanliness of the tree layout for the computer program data. Our users had

a sufficient understanding of the programs they were using so they could mentally

“fill in” the missing edges in the graph, without them actually existing. These graph

edges are still important, however, so we proposed changes to the visualization that

allowed our users to see this underlying graph structure while also preserving much

of the existing tree visualization that both the users and visualization researchers

had grown to rely on.

This work was previously presented at IEEE VIS 2019 and the published work
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is available [156]1. The content of the original paper has been modified slightly to

fit the flow of this dissertation. This work was done by Alex Bigelow, Katherine

(Kate) Isaacs, and myself. Our collaborators were the members of the Phylanx

group2, consisting of Rod Tohid, Bibek Wagle, Shahrzad Shirzad, Patrick Diehl,

Adrian Serio, Alireza Kheirkhahan, Parsa Amini, Hartmut Kaiser, and Kevin Huck.

My Atria tree visualizations have continued to be used in more elaborate tools,

including Jupyter notebooks [82] and an interactive linked dashboard [19, 125]. Of

note, the dashboard and work by Sakin et al. [125] explicitly extends the Atria task

analysis to temporal data, expanding the impact of my original work and allows our

users to analyze the program performance events with a Gantt chart timeline.

This work was supported by the United States Department of Defense through

DTIC Contract FA8075-14-D-0002-0007 and by the National Science Foundation

under NSF III-1656958.

Figure 3.1: Design Study timeline (log scale). The top contains a mark for each
collected artifact. Connections to identified goals, sub-goals, and tasks are marked
when direct evidence for them has been identified. Artifacts from meetings present-
ing major design changes and notes from the evaluation sessions of Section 3.6.2
are indicated with color. The bottom shows the timing of various deployments with
users. This rich collection of over 150 artifacts mitigated issues in designing around
shifting data and concerns.

1doi:10.1109/TVCG.2019.2934285
2Phylanx repository: https://github.com/STEllAR-GROUP/phylanx

doi: 10.1109/TVCG.2019.2934285
https://github.com/STEllAR-GROUP/phylanx
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3.1 Introduction

When choosing whether to move forward with a design study, there are several

questions a visualization expert should answer to ensure project viability [133].

Among those questions are: (1) whether real, non-synthetic, data is available, and

(2) whether the tasks that domain experts will use the visualization for will persist

long enough to complete the study. Ensuring these points can help avoid problems

arising in designing for the wrong data assumptions or having the users lose interest

before the system is completed and evaluated. While in most cases it is prudent

to avoid these problems, we argue there are circumstances in which it is fruitful to

accept them.

In particular, there are scenarios where precisely what data to collect is an open

question. The answer would ideally be driven by what analysis needs to be per-

formed. This “chicken and egg” situation can dissuade both domain and visualiza-

tion experts from engaging. The domain expert does not want to collect data with

no plan for analysis. The visualization expert cannot act without real data. Thus,

an opportunity for visualization to inform the data collection process is lost and the

greater problem remains unsolved.

We observed this scenario in the domain of task-parallel computing. Parallel

systems are challenging to comprehend due to their complexity. Several factors affect

performance and correctness including program source code; the parallel libraries

used; the input to the program; and the architecture of the cluster on which it is

run. Understanding the emergent behavior in these systems is necessary to optimize

and debug them. While some areas of parallel computing have a long history of data

collection for performance analysis, the data necessary to analyze a more recently

prominent model—asynchronous many tasks—is a relatively open area.

Recognizing the pitfalls of changing data and concerns, but also the potential

of using visualization to help drive the development of those data and concerns,

we proceeded with the design study. Although the pitfalls could have derailed the

project, we found other factors—such as the shared interest in the data collection
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problem and the identification of key recurring abstract structures—resulted in the

creation of visualizations that were beneficial even as things changed. From these

experiences, we demonstrated how the benefits of visualization are not only the

design of the final solution, but the integration of the visualization team and its

effects on the overall project development.

We describe our iterative design process and how we adapted the design study

methodology [133] to the “moving targets” of our data and user tasks. Our task

analysis and abstraction were developed through multiple rounds to account for

evolving concerns.

Through this process, we developed our technology probe [63], Atria, a multi-

view system for exploring execution graphs. Unlike other execution graph visual-

izations, we display the graph as an expression tree, evoking the main logical de-

pendencies of the computation while preserving additional edges on demand. Atria

provides the context of source code to the execution graph not only through linked

highlighting, but also through a default aggregation and de-cluttering scheme based

on line of code.

We further discuss how the changing concerns affected deployment with implica-

tions for design, particularly in the case of Jupyter notebooks [82]. We augment our

assessment of our design with evaluation sessions and semi-structured interviews.

The major contributions of our study are as follows:

• A task analysis for execution graphs (Section 3.4) and how we iterated on that

analysis under changing conditions,

• The design of Atria, a interactive visual tool for analyzing task execution

graphs (Section 3.5),

• A discussion of the design adaptations and the difficulties of incorporating

visualization within the Jupyter notebook environment (Section 3.5.4), and

• Reflection on the project and recommendations for conducting design studies

in the presence of evolving data and concerns (Sections 3.3.2, 3.3.2, and 3.7).

We discuss related work (Section 3.2) followed by necessary background in task-
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parallel execution graphs (Section 3.2.4). We then discuss the organization of the

project (Section 3.3.2). We conclude in Section 3.8.

3.2 Related Work

We discuss related work in design study methodology, task abstraction, visualization

of execution graphs, and tree visualization techniques.

3.2.1 Design Studies

We report on the initial phases of an ongoing design study, including multiple de-

ployments of our system, Atria, as a technology probe [63]. This process has enabled

us to collect rich, qualitative data. While informing future iterations in our collabo-

ration with domain experts, reflections [96] (Section 3.7) on these data already have

meaningful implications for the visualization community.

In the context of the nine-stage framework for design study methodology [133],

this work represents a full cycle, including many sub-cycles, of each of the nine

stages. We build upon previous visualization and design study experience at the

learn stage to inform careful, deliberate decisions at the winnow stage, that we dis-

cuss in Section 3.3.2. We observed refinements at the cast stage over time, where

deployments and conversations with domain experts exposed deeper insights into

the various roles that they play in practice. At the discover stage, our tool enabled

insights for our collaborators and ourselves, particularly with respect to horizontal

movements in the task-information space—Atria drove many discussions about what

data needed to be collected that were unlikely to have occurred without our probe’s

involvement. The simple nature of the tool enabled relatively simple design refine-

ments, as well as rapid implement and deploy stages. Throughout we use the term

iteratively to describe the repetition of design stages and iteration to mean each new

version of Atria presented to our collaborators, as marked in green in Figure 3.1.

In framing our contributions in terms of the nine-stage framework, it is important

to address considerations that it does not capture. We deployed Atria in very diverse
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technical and practical contexts, creating a parallel, multi-channel collaboration

environment like that described in detail by Wood et al. [157]. We did not experience

the constraints described by Crisan et al. [33], but our process also benefited from

thorough artifact generation, frequent communication, and staged design. Our focus

in this early phase of a long-term collaboration has been to elicit robust design

requirements, rather than deploying prototypes too early [94]. Instead, we report on

the use of a technology probe to build, intervene, and evaluate [93], with Sedlmair et

al.’s [133] reflect and write stages applying continuously. As Hinrichs et al. [59] show

in digital humanities, we demonstrate value in the visualization process. Finally, we

contend that, in some cases, it may be beneficial to consider collaborations where a

design study will have an opportunity to impact how data is collected and how the

initial data abstraction is designed.

Task Abstraction. Several methods have been proposed for bridging low level

visualization tasks to more complex goals [18, 123, 84, 162]. Brehmer and Mun-

zner [18] propose composition of low level tasks. Zhang et al. [162] demonstrate

combining hierarchical task analysis [3, 4, 126] with visualization task abstractions.

As the data and concerns evolved, we did not observe stationary tasks at a low

enough level to yet apply these detailed methods meaningfully. However, recog-

nizing the importance of linking goals and tasks, we describe our task findings in

terms of multiple levels. The lower level tasks of high level goals often overlapped,

resulting in a lattice as described in Section 3.4.

3.2.2 Execution Graphs

Execution Graph Visualization. Node-link diagrams are prevalent in execu-

tion graph visualization [20, 38, 64, 121]. Dokulil and Katreniakova [38] remove

edges that can be reached by other paths, plotting their results with dot [46, 47].

DAGViz [64] and Grain Graphs [121] use aggregation schemes to decrease the num-

ber of marks shown, taking advantage of nesting structures inherent to fork-join

models of parallelism, but not present in general tasking models such as ours. Nei-

ther solution is interactive. In contrast, our interactive visualization abstracts exe-
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cution graphs to a tree and aggregates based on the source code.

Trace data from tasking models has been visualized with Gantt charts. Ravel [65]

shows the edges in Charm++ traces [74], but these are a subset of those in the full

execution graph. Haugen et al. [56] show edges connected to a single task on demand.

Pinto et al. [116] do not show edges. We do not have trace data and thus Gantt

charts are inappropriate for our use.

Parallel calling context trees (CCTs) describe caller-callee relationships and are

frequently visualized [2, 1, 89, 107, 7]. They differ from our execution graphs which

are at a finer-grain task level and include dependencies not captured by CCTs. For

a survey of visualizations across parallel computing models, see Isaacs et al. [67].

3.2.3 Trees Visualization

Visualizing a graph as a tree is an established practice [54, 41, 68, 110, 109] to

reduce complexity and improve readability, especially when the tree has a semantic

meaning. In our case, we visualize the edges relating to how the computation is

expressed in code—its expression tree.

To reduce clutter, we collapse subtrees and encode them as triangles, like Space-

Tree [117], but our collapsing strategy is based on meaning in the source code rather

than screen space. Many techniques [85, 25, 117, 106, 141] exist for scalable hierar-

chy visualization. As part of the strategy of handling evolving data and tasks, we

aim to “[satisfy] rather than optimize” [133] our depiction, but could apply these

techniques once necessary. For a survey of tree techniques, see Schulz [132].

3.2.4 Task Parallel Programs and Execution Graphs

Parallel and distributed programs utilize vast computational resources to produce

results that are often too time-consuming, if not infeasible, on a single processor.

Achieving these time benefits often requires careful consideration of performance

on the part of the programmers. Understanding observed performance is difficult

because of the complexity of the emergent behavior stemming from the source code
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and the systems on which they run. The systems include not only the hardware,

but the runtime which dictates the execution of the program and the environment

in which it runs.

Performance is affected by several factors including adaptive scheduling policies

that are difficult to predict. Intermediate structures may be created by the runtime

that are not apparent to the programmers. Even known structures may be hard to

reason about, given the dynamism in the system.

Asynchronous tasking runtimes (ATRs) are a class of parallel runtimes that have

been gaining interest for their potential to increase resource utilization and overcome

performance bottlenecks inherent to other paradigms. However, due to their more

recent prominence, support for performance analysis of ATRs is still developing.

An Asynchronous Tasking Runtime supports an Asynchronous Many-Task

(AMT) execution model. Typically, these models divide and encapsulate work

(computation) into units known as tasks. The runtime then schedules the task for

execution on one of its distributed resources. The flexibility to move tasks between

resources allows ATRs to take advantage of parallelism other models may not.

3.2.5 Execution Graphs

Common to tasking models is the notion of an execution graph. In an execution

graph, each task is a node. The edges are dependencies between tasks. A task

cannot be executed until its dependencies are met. Tasks without dependencies

between each other may run concurrently. Runtime developers are thus interested

in these dependencies and their effect on scheduling decisions.

Execution graphs may be recorded during program execution. To reduce collec-

tion overhead, tasks of the same type (e.g., same function name) or with the same

provenance (e.g., same function name and sequence of function names leading to

the task) may be aggregated. We focus on the latter type of execution graph data

in this project.

Attribute data is collected for each node in the execution graph. Typically for

performance analysis, the number of times each task type was run (count) and the
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total time spent executing instances of that task are recorded. During our project,

attribute data was augmented to also collect information about what mode the task

was executed (see Section 3.3) and relation to line of source code.

3.2.6 Performance Data and Analysis in ATRs

There are many ATRs under active development [73, 74, 32, 6, 15, 36], but no

standardized expectation for what performance-related data is collected. Exist-

ing parallel performance tools like TAU [134] and Score-P [83] can collect general

performance data such as low-level profiles and traces, but often do not support

ATR-specific data such as execution graphs. Existing execution graph work has

often been specific to the ATR. Exactly what data could and should be collected

when analyzing an ATR is an open area of research.

3.3 The Phylanx Project

We conducted this design study as part of a visualization initiative in the Phylanx

Project. First, we provide technical background of the Phylanx [140] system neces-

sary to understand our resulting visualization. We then discuss the organization of

the project itself, how it led us to accept winnowing pitfalls, and the roles we cast

in the design study.

3.3.1 Technical Overview of Phylanx

Phylanx is an actively-developed system for performing array computations in a dis-

tributed fashion. Its purpose is to provide the advantages of distributed resources

(faster time-to-solution and the ability to scale beyond single-machine memory lim-

itations) to data scientists while allowing them to use the tools with which they are

familiar.

One such tool is Python. Phylanx has a front-end which allows data scientists

to mark which of their Python functions they want run distributedly. Phylanx then
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translates the array operations in the Python code into HPX. HPX [73, 72] is a

C++ standard library and asynchronous tasking runtime.

The average end users need not be concerned with how Phylanx transforms

their code. However, power users interested in performance and the developers of

the Phylanx system are.

Phylanx first translates the code into an intermediate representation in a domain-

specific, functional language called PhySL. The function calls, control flow opera-

tions, data operations, and blocks found in the PhySL representation are referred

to as primitives. These primitives are translated to tasks in the HPX runtime. The

dependencies of each primitive are the arguments it needs to execute (which may be

other primitives), data access operations, or any other constraints on variables the

primitive uses. The dependencies and primitives form the execution graph which is

run by HPX.

HPX can schedule any instance of a primitive in one of two modes: synchronous

or asynchronous. A synchronous primitive is executed immediately from the prim-

itive that initially spawned it. An asynchronous primitive is added to an internal

work queue and may be executed on a different processor at some later time. Asyn-

chronously scheduled primitives give the runtime more flexibility but incur more

overhead, so it is beneficial to execute shorter primitives synchronously.

3.3.2 Phylanx Project Organization

The Phylanx project comprises three teams, each located at a different academic

institution. The Runtime Team develops the HPX and Phylanx libraries. The

Performance Analysis Team develops instrumentation to collect performance

data and tools to improve performance. They also maintain the nightly regression

tests and reporting. The Visualization Team develops visual tools to aid in

performance analysis and debugging. Additionally, a program manager (PM) for

the project seeks out further collaborations and develops data science applications

using the Phylanx system. A list of team members involved in the design process

and their roles is available in the supplemental material.
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We discuss the inception and further organization of the project within the frame-

work of the design study methodology of Seldmair et al. [133], specifically the winnow

and cast phases. We note which pitfalls were accepted and what other aspects of

the project helped mitigate the negative affects of those pitfalls.

Accepting Winnowing Pitfalls

Prior to the official project start, the Performance Analysis PI and the Visualiza-

tion PI had several conversations regarding difficulties in analyzing ATRs. The

Visualization PI had faced the issue of traditional data collection being insufficient

to analyze ATRs [65]. The Performance Analysis PI expressed difficulty in making

sense of the data that could be collected. He noted there was little point in spending

development resources and overhead on data that could not be analyzed.

These two coupled issues, (1) no data to analyze and (2) no analysis with which

to use to the data, present a “chicken and egg” barrier to improving understanding

and performance of ATRs. The two PIs view determining what data to collect a

research goal of the project.

The data being an evolving target of research, along with the development of

Phylanx itself and its changing concerns, means the project runs afoul of two of

Sedlmair et al.’s winnowing pitfalls:

PF-4: No Real Data Available (Yet). During the project, the structure of

the data and the format of the data have been evolving. Other potential sources

of data are not yet instrumented. It is difficult to arrive at a final visual solution

without finalized data.

PF-10: No Real/Important/Recurring Task. The fact that the data is in

flux means tasks involving that data are also in flux. Furthermore, as Phylanx is

developing rapidly, the concerns of the team members change over time, affecting

their higher-level goals.

The decision to proceed despite these pitfalls was motivated by the desire to

solve the larger problem of performance optimization and analysis for ATRs. We

view working with preliminary and in-flux data as a stepping stone to achieving
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the “data behind the data”—the data that can only be envisioned with knowledge

gained from exploring what we already know.

There are several factors that help with the continuing success of the project,

despite the pitfalls:

Identification and availability of meaningful preliminary data. Though

the data collection is its own area of research, the PIs foresaw the importance of the

execution graph based on prior work and could confidently predict it would continue

to be useful to understand. We hypothesized that some tasks would therefore remain

stable (see Section 3.4). Furthermore, design did not begin until a preliminary

dataset could be generated.

Strong interpersonal relationships. The cohesion of the three groups facil-

itated adaptation to new data. Teams were quick to clarify or explain changes in

format and to react to requests to change. The trust among the teams allowed the

Visualization Team to plan for future functionality with relatively low risk.

Overarching goal of the project did not change. The high level goals of

performance analysis and optimization, along with the goal of discovering what data

to collect, remained the same, though strategies employed by the users changed.

Thus, high-level goals that are aided by visualization, such as understanding the

execution, remained fixed.

Visualization considered a deliverable by entire project. All project

teams recognize the visualization component as an outcome. Progress on the vi-

sualization is reported at the weekly full-project teleconference and included in all

reports. The success of the project includes the success of the visualizations.

The incorporation of visualization as a project-wide outcome underscores the

continuing approval and enthusiasm communicated by project gatekeepers, placing

them in the High Power-High Interest quadrant of the matrix proposed by Crisan et

al. [33]. Team members were not only authorized to spend time on the visualization,

but encouraged to do so. We further discuss project roles below.
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Casting Roles: Gatekeepers, Analysts, Experts

The Runtime and Performance Analysis PIs, project manager, and program man-

ager all serve in the gatekeeper role, with the Runtime PI and project manager

being the most central in allocating time with front-line analysts. One student was

identified as a front-line analyst early in the project. As the project evolved, several

other students with differing concerns (See Section 3.6) were cast in the role.

The gatekeepers also acted as front-line analysts. The PIs had similar technical

goals as the students. The project and program managers were more representa-

tive of a second goal—communicating the project to outsiders. All gave feedback

regarding designs throughout the project.

An interesting facet of the project is that almost every person is a form of tool

builder. Sedlmair et al. noted the pitfall of mistaking fellow tool builders for front-

line analysts. Here they are both because a major goal of the visualization is to help

the tool builders in building their tools. Their role as tool builders further helped

them accept working with an in-development visualization (See Section 3.7).

Some studies have found success in blurring the boundaries between domain and

visualization experts [157]. Our project naturally maintained them, further avoiding

the pitfalls of working with fellow tool builders [9]. We found communicating with

mock ups and screen shots was sufficient—users did not need to learn the language of

visualization. Furthermore, as the other teams trusted in the visualization expertise

of the designers, they accepted change in the design over time.

3.4 Task analyses

We had three objectives in designing our visualization. We wanted to (1) support

the analysis needs of our collaborators, (2) refine data collection and analysis for

tasking models, and (3) prepare for future needs given the refined data collection

and the progress of the Phylanx project. Through our multi-year collaboration,

we assessed needs through general project meetings, focused visualization and per-

formance analysis meetings, and informal interviews. From these, we developed a
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goal-to-task lattice ( Fig. 3.2), which we updated as needs shifted. We elaborate on

this process and present the lattice below.

Figure 3.2: A goal-to-task lattice, showing the relationships between high-level um-
brella concerns (U1 - U3); more specific goals (G1 - G6) and sub-goals (S1 - S6); and
low-level tasks (T1 - T6) that directly inform the design of a visualization interface.
The comparison sub-goal and task were added as data and concerns evolved. G5
was identified as a future goal based on project priorities in collecting and analyzing
the data.

The project had weekly status meetings where all teams gave updates on the

progress of individual components. Emerging problems were briefly discussed, but

scheduled for another meeting if necessary. There was an optional meeting slot

to discuss performance analysis and visualization specifically when requested. We

wrote notes from both these meetings, including subjects not directly related to

the visualization. We also had face-to-face meetings twice a year, once at another

team’s site and another at a conference in high performance computing.

Through the present, we created 152 note files with a mean 2800 characters

per file. Some contractual information prevents us from releasing the complete

audit trail [23] at this time, but anonymized summaries of our task analyses, with

relationships between specific note files and the goal-to-task lattice are included as

supplemental material. The project manager also compiled regular notes from the

perspective of the Runtime team which augmented our understanding of the full

project status and aided in our planning.

Tasks regarding the execution graph were derived from the note files by two

authors independently who then developed a lattice spanning from high level goals
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to low level tasks using affinity diagramming. We classify these as umbrella concerns

(U1 - U3), goals (G1 - G6), sub-goals (S1 - S6), and tasks (T1 - T6).

3.4.1 Umbrella Concerns

We use the term umbrella concerns to describe the major classes of goals we found

our users had with respect to visual analysis. Some goals fell under multiple umbrella

concerns.

U1. Program Comprehension. Our collaborators want to understand what

happened when the program was executed. Many were working on a specific piece

of the Phylanx pipeline and did not have a concrete mental model of how the trans-

lation from code to execution graph took place, nor a sense of the intermediate

PhySL representation. Although previous work found that computing researchers

may consult graphs to debug their mental model [37], we found some of our collab-

orators wanted to build their mental model. This is often a first step to devising

new strategies, debugging, or performance analysis.

U2. Performance Analysis. An impetus for moving to tasking runtimes is

the potential for high performance—decreasing the time to solutions and/or making

previously infeasible computations feasible. Thus, understanding and improving

the performance of a given Phylanx application or the system itself was a driving

concern.

U3. Communication. Our collaborators wanted to create figures to help

explain their own research in publications. The project and program managers were

interested in explaining to potential users how the Phylanx system works. Such

users often already have a background in parallel computing and thus can interpret

the visualization when presented by someone from the team.

3.4.2 Goal-Task Lattice

We identified six goals relating to the execution graph and our umbrella concerns,

some of which could be divided into smaller sub-goals. We discuss each goal and
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relate it to low-level tasks. We then summarize the tasks pulled from our goals.

G1. Overview of Execution. All three umbrella concerns wanted some sort

of overview of what happened during the execution, in particular, the size and shape

of the execution graph and how many times each node was executed. This goal can

be divided into tasks of gaining a graph overview (T1), following dependencies (T2),

and finding substructures (T3). For example, our collaborators explained that the

visualization should allow them to understand if something was called recursively.

This can be done by following a cycle of dependencies in the aggregated execution

graph.

G2. Relate to Code. While the execution graph describes how the runtime

executes the program, our collaborators cannot directly change the graph itself, only

the associated source. Thus, they want to know the relationship between the code

and the graph for both program comprehension and performance analysis concerns.

We divide this into two sub-goals: (1) finding the line of code related to a node in

the graph and (2) finding the nodes in the graph related to a line of code. The latter

we categorize as a task of finding a subset of nodes (T4).

G3. Understanding Timing Information. Central to the Performance Anal-

ysis concern is data recorded about time spent executing each node. Of particular

interest is finding parts of the execution that took a long time or behaved in an un-

expected way, leading us to identify sub-goals of: (1) finding hot spots, (2) finding

hot paths, and (3) finding timing anomalies. Hot spots are nodes that executed for

a long time. Hot paths are sequences of such nodes.

Later in the project, as our collaborators progressed from the initial development

of their applications to performance optimization, a fourth sub-goal, (4) comparing

performance between runs, was discovered. We added it when we revisited our

goal-task lattice.

All of these sub-goals require finding a subset of interesting nodes (T4) and

analyzing attribute data of those nodes (T5). The hot paths sub-goal also requires

following dependencies (T2). The timing anomalies sub-goal may further involve

identifying substructures in the graph (T3) and understanding an overview (T1).



42

The comparison sub-goal requires comparing attribute data (T6).

G4. Understand Runtime Decisions. A key feature of tasking runtimes is

built-in support for adaptively altering execution based on runtime data to improve

performance. Our collaborators want to know what choices were made and the effect

on performance, making this a Performance concern. An example of this goal is the

choice of execution mode as described in Section 3.3.1. Similar to G3, understanding

runtime decisions is aided by finding a subset of interesting nodes (T4) and analyzing

node attribute data (about runtime parameters) (T5). As decisions are related to

dependencies, following dependencies (T2) is another task. Also like G3, we updated

the tasks for this goal with comparison (T6) as the objectives of our collaborators

shifted.

G5. Understand Utilization. The primitives represented by the execution

graph as nodes must be scheduled to run on computing resources. Researchers are

interested in maximizing the utilization of those resources—spending less time idling

and more time doing useful work. Thus, this was another Performance concern.

However, neither examining this data nor the capability to associate utilization

data with the execution graph was a development priority for our collaborators over

the other goals. We thus included it in our goal-task lattice as a possible future

node, with references to notes on the matter so we may look back on them should

utilization become a more pressing concern.

G6. Export/Save. Supporting the Communication concern, our collaborators

requested a mechanism for exporting and saving the visualization.

From the goals, we collect six low-level tasks. We list them here followed by

their relationship to the task taxonomy for graphs of Lee et al. [87].

T1. Overview (4.4 Overview)

T2. Follow Dependencies (4.1.1 Adjacency, 4.3.1 Follow Path)

T3. Find Substructures (5 Higher Level Tasks)

T4. Find Subsets (4.2.1 Node Attribute Tasks)

T5. Analyze Node Attributes (4.2.1 Node Attribute Tasks)
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T6. Compare (4.2.1 Node Attribute Tasks, 5 Higher Level Tasks)

The presence of topology-based (finding adjacencies) and browsing (follow path)

tasks when understanding dependencies motivates our use of visual representations

that explicitly encode edges.

While there are several node attribute tasks, we note that we have relatively few

attributes—timing data and mode of execution. This motivates our design decision

to use on-node encoding, as it is easily understood by most users [111].

Figure 3.3: The design of Atria. The main view represents the expression tree
contained in the execution graph. (A) Triangles represent collapsed subtrees. (B)
Elided links are shown on hover. (C) Fill color and border style encode time and
execution mode respectively. (D) Users can toggle between showing inclusive and
exclusive time. (E) Tooltips provide details on hover. (F) Code view with linked
line of code highlighting. (G) Primitives listed by execution time. (H) If multiple
runs are available, comparative mode may be enabled.

Evolution of the Goal-Task Lattice

We remark that our task analysis remained stable through multiple revisions. Later

notes tended to reinforce goals and sub-goals already in the lattice. This may be
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due to the central need for comprehension of the execution as a starting point for

any other goal. We hypothesize this relative stability over time contributed to the

success of the visualization, despite the evolution of the data and the shift in focus

towards comparison.

3.5 Visualization Design

Atria (Fig. 3.3), was designed and developed iteratively as data became available.

We describe our design choices and explain how the evolving data, tasks, and envi-

ronment influenced our design decisions.

The central view of Atria is the execution graph, visualized as a node-link tree.

We explain this choice along with the choice of attribute encodings. We then describe

the auxiliary linked views.

Throughout its development, Atria has served several purposes: (1) an initial

validity check on data generated, (2) a visual tool supporting our collaborators

in their evolving tasks (Section 3.4), and (3) a platform for hypothesizing about

what new data to collect to help with the analysis. In support of these concerns,

deployment of a working version was a priority. Matching the evolution of project

concerns, we strongly embraced the advice [133] of satisfying needs rather than

optimizing them. We describe the effect of these deployments on design, including

significant changes for Jupyter Notebooks (Section 3.5.4).

3.5.1 Execution Graph

An execution graph is a directed acyclic graph of tasks describing the dependencies

that must be met before any task (primitive) can be executed (Section 3.3). Rather

than show all edges in the graph, we display a subset of the edges and lay out the

graph as a tree. Specifically, we represent the execution graph as an expression tree.

In an expression tree, each node is an operation and its children are its operands.

In Atria’s graph view, each node is a primitive, which may be a simple or complex

operation, and each child is an operand to that primitive as described by the PhySL
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Figure 3.4: The expression tree of transx · (pred− y− x).

intermediate representation. Fig. 3.4 shows a small example. We chose to prioritize

expression tree links because of their relation to the PhySL code and to descriptions

of the Phylanx model we had gathered from discussions with collaborators and their

presentations.

Our collaborators’ interest in the expression tree abstraction drove the evolution

of the data collection. First, we collected only expression tree data. We created three

interactive tree visualizations using icicle plots, node-link diagrams, and indented

trees. Each allowed collapsing of sub-trees into single marks (triangles in our node-

link tree). Within a few months, it became clear from viewing only the expression

tree that there are cases where the execution graph is needed for analysis.

We created mock ups showing a full-graph node-link diagram as well as op-

tions for augmenting the tree visualizations with the extra edges. Our collaborators

uniformly preferred the tree layout. We then decided to focus on the node-link

representation (using D3’s [16] Reingold-Tilford [120] layout) for the tree because

that early visualization received the most use; node-link diagrams are already preva-

lent in the computing space [66]; and studies have shown the utility of node-link

representations for path following tasks [50, 76] i.e., T2.

Mindful to avoid premature design commitment, we revisited the choice of tree

representation later with a collaborator not involved earlier. He strongly preferred

the node-link tree, saying “Whenever we were learning algorithms or something like

that, we would draw it like that. It’s more comfortable because we’re more used

to it and we can more easily see what’s going on...Although the one in class might

be drawn top down though.” We chose the horizontal aspect ratio because most
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displays have more horizontal space.

This familiarity with node-link diagrams can further help users in identifying

substructures (T3). The trade off is that node-link diagrams are not compact.

Users had to zoom or scroll to gain an overview (T1).

Elided Structure and Interaction. By showing only the expression tree as

dictated by the PhySL, we have removed two classes of edges: (1) dependencies be-

tween multiple accesses of the same variable, and (2) dependencies between multiple

uses of the same function call. These are not usually needed for our users’ goals.

To support a more detailed analysis if necessary, we show them in a node-centric

manner on demand. When a user hovers over a node, the edges are overlaid in

yellow to be non-obtrusive.

Some sub-structures in the tree are common but rarely of interest to our collabo-

rators. To de-clutter the visualization, we use two strategies. First, we automatically

collapse sub-trees for a known set of “uninteresting” primitives. Second, for the on-

demand links, we omit edges between library functions (e.g., add) as these do not

communicate the structure of the application, but lower level information about the

runtime that our collaborators do not expect to be of use.

Node Attribute Encodings. As timing and runtime decisions tie directly into

our collaborators’ goals (G3, G4), in particular task (T5), we encode timing and

execution mode on-node. Execution time is encoded in the node’s fill saturation,

allowing users to find groups of nodes with similar timing in context (T3, T4).

Execution mode is shown in the border’s line style. The exact time and name of

execution mode, as well as other attributes such as the execution count, are provided

in a tooltip on node hover further supporting T5.

Users can switch between two concepts of execution time. Inclusive time is

the wall-clock time taken for the primitive to execute. Exclusive time subtracts

from the primitive any time that can be attributed to waiting on its children. Our

collaborators are interested in both.
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3.5.2 Auxiliary Views

A collapsible linked view displayed the PhySL code to support G2, relating to code.

Sub-goals S1 and S2 are implemented as linked highlighting. The code view auto-

scrolls on node hover. We experimented with showing the related C++ or Python,

but PhySL was preferred.

To support S3, finding hot spots, we have a collapsible list view which shows the

tree primitives from most time-consuming to least with colored bars matching the

on-node time encoding. The view is similar in design to that of Intel’s VTune, which

is used by several of our collaborators. VTune works at a lower-level of abstraction

and cannot list by primitive.

3.5.3 Designing for Comparison

During our design study, some of our collaborators began exploring the effect of

adaptive policies that change execution modes at runtime. They make changes to

these policies between runs and wish to compare the results. They reported opening

multiple Atria instances. In response we added a comparison mode.

Discussions after we proposed a comparison view indicated that our collaborators

only compare two runs at a time, allowing us to calculate a simple derived value.

For timing comparison, we change the node fill from execution time to execution

time difference using a diverging color scale. For execution mode comparison, we

highlight (magenta) the borders of primitives that were executed differently between

runs but keep the line-style encoding of the first dataset. These encoding changes

support the discovery of interest subsets of nodes (T4) and their comparison (T6).

When only policies are changed, the structure of the tree does not change. How-

ever, when the application code or Phylanx changes, the tree structure will change.

As Phylanx is under active development, we observed small topology changes every

few weeks. When we observe nodes that are not present in both trees and thus

cannot be compared, we draw them with lowered opacity, similar to the approach

employed by Campello et al. [22]. So far topology comparison has not been a focus
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of our collaborators.

3.5.4 Design Changes for Deployment

Our primary Atria audience uses a web-based deployment. As the data collection,

output, and use scenarios evolved, we created several design variants, resulting in

multiple similar deployments, described in the supplemental material.

Output and collection changes, made by the Runtime team, were driven by visu-

alization goals, specifically: (1) integration of Atria with automated nightly regres-

sion tests and (2) a full application-to-analysis demonstration in Jupyter, requested

by team members with external communication goals (U3). We discuss changes for

the latter below.

Atria in Jupyter

Jupyter Notebook is an interactive coding environment supporting literate program-

ming. Users enter code into input cells that can be run (and re-run) to produce

output cells. Variables persist through multiple input cells. Jupyter Notebooks are

one of Phylanx’s front-ends, available through Docker containers. The front-end is

important to the project due to the ease and portability of container installation

combined with the prevalence of Jupyter in the data science community.

The project and program managers give Phylanx demonstrations through this

front-end and thus wanted Atria integration to help explain the programming model.

Once we had an initial Jupyter pipeline in place, we found additional users who

wanted to test out small code snippets and see the effects. An example notebook

is shown in Fig. 3.5. The export/save (G6) functionality was prioritized as users

wanted to further share results.

The Jupyter Notebook interface imposed an additional space constraint on Atria,

decreasing the width to ≈ 60% of the browser. Normally our users can devote an

entire display to the visualization. We modified Atria’s layout of auxiliary views to

prioritize visibility of the graph. Tool tip data was moved to a fixed position in the
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Figure 3.5: Atria in Jupyter Notebook. Cell 4 is Python code that uses the Phylanx
library. The newly-generated performance data and tree are passed in Cell 5. Atria
is loaded and displayed in Cell 6, with the generated PhySL shown in the bottom
left and the details of the hovered node shown in the bottom right.
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bottom right so it did not obscure the graph or legend.

We decreased the size of the code view and placed it in a floating window in the

bottom left. It shows three lines of code, which we determined was enough context

for our users during formative evaluation. Users can output the full PhySL to a

separate Jupyter cell, which was done during demonstration. The Jupyter interface

itself thus acted as another (full) code view, available via scrolling.

Jupyter is hosted in a web environment with its own structure, styling, and

handling of Javascript. This posed technical challenges in embedding our Javascript

visualization in a cell in a maintainable manner. We view streamlining of this process

as an avenue for future work.

3.6 Evaluation

We evaluate Atria and its inclusion in the Phylanx project through case studies

gathered during deployment and evaluation sessions. Additional figures describing

the evaluation and a video showing the case study of Section 3.6.1 are included as

supplementary material.

3.6.1 Deployment Case Studies

As described in Section 3.5.4, we prioritized deploying versions to our collaborators,

creating several variants during the project. Additionally, the program manager

created a variant for his workflow at a secure facility. Data collection and design

streamlining done for earlier deployments made this last deployment possible.

We polled our collaborators for their non-evaluative uses of Atria every few

months. R3 consistently reported using Atria as described below. One other student

reported using it actively when they were working on a particular algorithm, but

has since changed objectives and does not presently use it. The program manager

reported using it sporadically to explain the project to others. In the evaluation

sessions (Section 3.6.2), four participants report using it minimally.

We describe two case studies. The first shows how Atria is used regularly in
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Figure 3.6: Comparison between two runs of the same application with different
policies. Pink-outlined nodes indicate a difference in execution mode between two
runs. The orange node ran slower after the policy change, but the net affect on the
parents was positive.

Phylanx development. The second describes how Atria was used in a reactive sit-

uation to aid in reasoning and how the Atria development process influenced the

performance debugging process.

Atria in Regular Use

Our primary frontline analyst, R3, began using the deployed version of Atria within

a few months of the start of design in January 2018. He reported using the visual-

ization on average once a week, more frequently when actively debugging.

He first runs the application he wishes to examine, generating the data used by

Atria. He copies the files to a local directory and opens Atria from the command

line. He considers the overall shape of the tree, noting that nodes with similar depth

may be candidates to run concurrently. Then, he considers a particular primitive

and its children to examine how the timing and execution of the children may have

affected the parent as shown in Fig. 3.6.

Using his gained intuition, R3 makes a change in the Phylanx policy. He changes

the thresholds that determine whether a primitive will be run synchronously or asyn-
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chronously. He runs the program with the new policy and collects data. Using Atria,

he compares the two runs to see which of the primitives changed their execution poli-

cies and whether that caused them to run faster or slower. As the policy change

is global and timing changes may have non-local scheduling effects, he browses the

entire tree. He uses his findings to inform the next iteration of policy development.

When explaining his workflow to us, R3 said “Also it’s that I want to be able

to visualize it [the algorithm], just seeing it implants it in my mind.” He explained

that he is a visual person and Atria makes it easier to think about the problem.

Investigation of Performance Regression

A significant slowdown in Phylanx’s alternating least squares (ALS) application was

discovered through nightly regression tests. The project manager (R2) suggested

using Atria to compare runs before and after the performance drop.

The regression tests ran with a large and a small dataset. Atria data was collected

only for the small run and showed no odd behavior, indicating further examination

of the larger run was required. As a test dataset, the visualization team collected

data using the older (pre-slowdown) code on a different cluster. No performance

difference was observed, indicating the behavior was machine-specific.

The Performance Analysis PI (P1) then collected the larger run data on the

regression machine. He discovered the problem was due to a change at the HPX

level. He suggested it would therefore not be visible in Atria. The Runtime PI (R1)

hypothesized it would show up as a 10-30% increase in all primitives on average.

We used Atria to compare the two versions (Fig. 3.7) and found R1’s hypothesis to

be correct.

Atria did not pinpoint the source of the problem, but was used to narrow the

space of possibilities and then confirm understanding of lower level effects on the

application. Furthermore, the involvement of Atria motivated deeper examination

of the problem and the data collection that led to discovery of the root cause which

was then fixed.
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Figure 3.7: Comparison between two ALS runs, before and after a significant slow-
down. As hypothesized by the Runtime PI, there would be a slight increase in
execution time on average for the slower run (blue).



54

3.6.2 Evaluation Sessions

We conducted evaluation sessions of Atria with seven members of the Runtime Team

(R4–R10). R10 had no prior experience. Some had seen Atria briefly (R5, R6, R8,

R9), though R8 only remembered after completing the tasks and R9 had only seen

a picture. Two (R4, R7) had previous influence on design. Sessions were conducted

at the participant’s workstation, with the exception of two (R6, R7) which were

done in a nearby meeting area.

We began our evaluation sessions with a demonstration and feature overview us-

ing a small example. Participants could use Atria and ask questions. We then asked

users to perform a series of tasks on a dataset generated from a Phylanx application

with which they were not familiar. We followed up with a semi-structured interview

and de-briefing.

Evaluation Sessions: Tasks

We asked the following evaluation tasks, each marked with its corresponding goal

from Section 3.4. Tasks L1–L4 are for a lone run. Tasks C1–C2 are for comparative

runs.

L1: Find a primitive that takes a lot of time. (G3)

How long does it take without its children? With? (G3)

L2: Find a primitive that is executed synchronously (G4)

L3: Find a primitive that is executed asynchronously (G4)

L4: Find a primitive that is repeated in the code (G1)

C1: Which run was slower? (G3),

*Why might it have been slower? (G1, G2, G3, G4)

C2: Find a primitive that changed execution mode. (G4)

Explain the change. (G4)

Five of the participants were able to complete the L1 tasks within seconds, doing

a visual search for the most saturated nodes and then reading the exact numbers
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from the tool tip. R5 attempted to use the list view, but it wasn’t yet linked. They

also required a reminder of the encoding before completion. R10 had difficulty and

seemed to be still learning the visualization.

All participants were able to complete L2 within seconds. However, in L3, four

the participants took tens of seconds. We believe this was because there was only one

correct answer for L3 in the sample data. L4 was also completed by all participants,

though two (R7, R10) asked for clarification.

In the comparison tasks, all participants answered which run took longer (C1),

with many verbally reasoning about the colors. However, in two cases (R4, R5),

the phrasing of the question accidentally included the follow-up hint. In finding

the changed execution (C2), all participants with the exception of R8 completed

the task, though two asked that the encoding be re-explained. While the other

participants seemed to browse for a node, R8 flipped between the comparison and

non-comparison mode, appearing to search for line style changes.

C1* was a higher level analysis task that required performance analysis back-

ground, thus we only asked it of participants who indicated they performed such

analysis in their duties (R5–R7). Each pointed out highly saturated nodes of the

slower run’s color as contributing to the slowness and noted in particular a store

primitive was among them. R7 suggested that since the store took a lot of time,

the program might be memory-intensive. R5 noted he had outside knowledge—that

the store primitive had been modified recently—and concluded the data might

represent the performance change due to that modification.

Throughout the tasks, we noticed a few common themes in the interaction. In

most cases, participants appeared to use the encodings and interactions as intended.

A few verbalized their rationale. Several participants consulted the legend in solving

tasks (R6, R8, R10). Difficulties arose in discerning the line borders (R4, R10) and

in evaluating the last hovered node which remained yellow (R4, R5, R7).
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Evaluation Sessions: Interviews

We conducted semi-structured interviews with participants, asking if there were

any features they found useful and what they would like the visualization do that it

could not already. If participants indicated they had used the visualization before,

we asked them how they used it.

Regarding utility, two participants said they didn’t know whether the features

would be helpful or not (R6, R9). The remaining participants each listed several

components of Atria, but there was little consensus among them. Repeated features

included: access to timing data (P4, P5, P7), the linked code view (P4, P5, P8),

the comparison view (P4, P5, P9), and links between dependencies (P5, P7, P8).

Suggestions for improvement included differentiating primitive types (e.g., variables,

functions, control-flow) (R6, R7) and more de-cluttering of the node-link tree (R6,

R7).

Three participants (R4–R6) said they used a previous deployment to draw figures

for a paper [140, 147] or report. R8 said they used it to view the structure of codes

they were not familiar with and see timing data.

Evaluation Sessions: Discussion

In general, participants performed well on the evaluation session tasks with indica-

tions that our encodings were used to complete them. Most evaluation tasks were

short as they were constrained by session length, but we consider them necessary to

establish basic usability and to engage participants for the interviews.

The least experienced participant, R10, struggled with several tasks. R10 had

just begun learning how to code. Our goal-task lattice focused on expert analysis

or communication led by an expert, which may explain these observations.

The participants who performed the high level task, hypothesizing why one run

was slower, showed a combination of reasoning including identifying hot spots (G3)

and relating knowledge about code (G2).

The sessions also revealed confusion in the execution mode encoding. It was a
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recent change to support the new undecided mode. We attempted to preserve the

previous encoding of solid and dashed borders with undecided being in between to

match semantics. We are now reconsidering this choice. The confusion reveals a

design challenge due to the shift in what we could assume about the data and a

trade off with consistency with prior encodings.

We attempted to keep the interview question regarding useful features unbiased.

We first asked if there are any features that were useful, stating that no and I don’t

know were helpful answers. Even still, we suspect participants were predisposed to

answer positively. Though potentially biased, we were surprised by the variance in

which features the participants found potentially useful.

We hypothesize this variance is due to the differing concerns of the participants.

Some were starting to consider comparative performance analysis. Some were fo-

cused on development of specific Phylanx features or example applications. The two

participants who answered they didn’t know are focused on developing interfaces be-

tween existing libraries and Phylanx. They are not working on the execution of the

task graph itself or on applications that decompose into the graph. The other par-

ticipants do but in different contexts, perhaps leading to their difference in feature

preferences.

3.7 Reflections and Lessons Learned

We discussed earlier (Section 3.3.2) the importance of the respect the Phylanx teams

have for each other and the positioning of the data collection and visualization as

goals of the project as a whole. These themes carry through several of the other

lessons we learned throughout the project thus far. We discuss these lessons below.

When designing for a moving target, seeking to satisfy rather than

optimize is essential. Recognizing that we were managing Sedlmair et al. [133]

pitfall PF-10, No Real/Important/Recurring Task, we focused strongly on satisfying

needs and deploying. We took a “wait and see” approach with optimizing particular

encoding choices and functionality, not wanting to expend effort on features that
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might not last. This mindset also helped avoid pitfall PF-20, Premature Design

Commitment as we espoused the changing nature of the data and project.

Similarly, our rapid deployments often contained UI bugs. These primarily de-

creased usability but did not change the meaning of the data—again satisfying rather

than optimizing. We believe these were accepted by our collaborators because of

the nature of active development throughout the whole project. The Visualization

team reported runtime bugs to the Runtime team (opening tickets on Github), so

the Runtime team naturally reported bugs with the visualization.

Task analysis and long-term corpus of notes help clamp down on reac-

tivity. The design of Atria was part anticipatory and part reactionary. Both have

risks. Anticipatory design may miss the mark. Reactionary design may support too

short-lived a target. By grounding ourselves in a long history, we were able to judge

any major addition in the context of long-term concerns.

Jupyter notebooks impose additional design constraints, but open a

wealth of interaction opportunities. Of our deployments, Jupyter has required

the most design changes and we foresee more as its use increases. While the space

constraints are greater, the cell-based interface could augment or change how we

develop and integrate interactive visualizations for use in this data science space.

Our current design depends on non-visualization cells and scrolling to match func-

tionality with our web version. This has worked well so far, but further development

of design guidelines for interactive notebook environments are needed.

Rapid changes combined with multiple deployment targets incur a

maintenance burden. While multiple deployments gave us many potential users

and their diverse viewpoints, they imposed a development burden on the Visualiza-

tion team. Each deployment is in a separate git branch and requires some manual

effort when applying changes. We plan to delve further into how we can organize

our code and development practices to decrease this burden.

Both the visualization and the design study process aided our collabo-

rators in accomplishing their goals and helped establish a culture of data

review. It can be difficult to discern whether it was a particular visualization that
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led to an insight, or the fact that anyone was looking at the data at all, especially

in studies where visualization was not already in the domain experts’ workflow.

The integration of the Visualization team and the design process made data

collection and review a central priority. The dialogue between the teams and the

rapid response to data exposed data collection bugs or mis-assumptions early. As

seen in our regression case study (Section 3.6.1), the intervention of the design

process worked in tandem with a specific analysis problem to reach a solution.

We recommend further examination of the benefits of visualization as an inter-

vention, particularly with respect to developing best practices surrounding a culture

of data review. Based on our experience, we attribute our success to the project or-

ganization from both sides. The rest of the project viewed the Visualization aspects

as first class deliverables. In turn, as key members of the project, the Visualization

team was also fully invested in other aspects of the project. Although this invest-

ment brings certain risks, its rewards include deep insights and impacts that are

otherwise unavailable.

3.8 Conclusion

We presented a design study amid potential pitfalls regarding lack of data availability

or task recurrence. The visualization outcome and the insights it supports have not

been the only benefit to our domain collaborators. The design process itself and the

integration with the visualization efforts have been beneficial, especially as an avenue

for refining data collection and analysis practices. Instead of running into a data

design problem, we successfully avoided rebuilding the visualization by discussing

the underlying data abstraction and our users’ mental models. This discussion

strengthened our visualization design and clarified the goals of our data collection.

One of the goals of the collaboration is to research what data needs to be collected

for asynchronous tasking runtimes. The evolution of the data has been in response

to intuition gained in analysis. The process has also resulted in rapid verification

of collected data and insights into current problems that we anticipate will form a
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strong foundation for the on-going, long-term design study.

Although we accepted some pitfalls as part of the project, several factors aided

us in managing them. Project organization was a large factor—teams had respect

for each others’ expertise, met regularly, valued each others’ time and deadlines,

and viewed the contributions of all teams as project deliverables. The high level of

participation resulted in a large corpus of design data collected both by the Visual-

ization team and the Runtime team. This documentation was revisited frequently,

both formally, through revising the task analysis, and informally, to guide design

efforts, avoiding ephemeral needs. Acknowledging that the data and tasks were in

flux, our technology probe, Atria, satisfied those needs while keeping the focus on

learning what data and tasks supported analysis rather than finalizing a tool design.

Family and Friends Summary: Our collaborators were in the midst of building a

software tool to speed up the time it takes to run a computer program, and they

wanted a visualization tool to help them see how well this tool was working. They

wanted to visualize the duration of individual parts of the program, while also being

able to understand how those individual parts related to each other. Sometimes

program parts can be run at the same time (i.e., in parallel), but other times they

depend on each other and need to be executed in order (i.e., sequentially). Our

final visualization looks like a family tree (see Figure 3.3), where the parts that can

be run in parallel look like side-by-side branches and the parts that have to be run

sequentially are the circles within those branches. What makes this visualization

unique is how we built it: we had to constantly change and tweak our design because

the data kept changing. Our collaborators were still figuring out what data to

collect to visualize while we tested various visualization ideas. All these changes

led us to title the paper “Visualizing a Moving Target.” Fortunately, the constant

communication between our teams and the relatively stable visualization goal meant

that we could build a useful visualization that was able to adapt as the project

evolved.
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CHAPTER 4

Guidelines for Pursuing and Revealing Data Abstractions

In the last chapter, my collaborators and I debated changing our visualization from

a tree abstraction to a graph abstraction. Ultimately, to match our users’ mental

models, we kept the tree abstraction and allowed for the graph details to be shown

on demand in the visualization. During our design discussions, we did not directly

ask about the details of our users’ mental models of computing programs; instead,

details emerged in snippets of conversations, like “[The tree visualization is] more

comfortable because we’re more used to it and we can more easily see what’s going

on.” Comments like these sparked separate conversations with Kate Isaacs and Alex

Bigelow about the difficulties in effectively communicating with data workers about

data abstractions. A data abstraction is an underlying structure of the data that

affects how it can be visualized, e.g., spatial data may include geographic coordinates

and can be visualized as a map (but cannot be visualized as a bar chart). There

are different ways to visualize the same data abstraction (e.g., tabular data may be

visualized as a bar chart or line chart). However, we wanted to investigate how easy

it was for data workers to consider changing their dataset from one data abstraction

to a different data abstraction. This transformation could lead to new insights into

the data and increase the available visualization options.

As a result, we conducted a grounded theory investigation to explore how a

diverse range of data workers across disciplines consider data abstractions. This

investigation consisted of an online interactive survey in which participants were

prompted to think of a dataset and choose the best fitting data abstraction from

our typology: network/hierarchy, textual, grouped, spatial/temporal, media, or tab-

ular (Figure 4.2). The participants also provided attributes of the data and examples

of what this dataset looked like using the selected data abstraction. After detail-

ing their dataset as one data abstraction, participants were asked to imagine their

dataset as one of the other five data abstractions. For example, if Taylor chose

“network/hierarchy” as the best-fitting data abstraction for their dataset, the sur-
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vey would ask them to imagine their dataset as “spatial/temporal.” We hoped that

the results of our survey would help us uncover a mapping or system of transforma-

tions between different abstractions in our abstraction typology.

We did not find such a mapping but through our grounded theory investigation

(Figure 4.1), we found that undiscovered, unused latent data abstractions are com-

mon. We found that latent data abstractions have hidden implications on how we

think about data. We defined a latent data abstraction to be a data abstraction

that is meaningful and useful, yet undiscovered. It has yet to be fully elucidated,

communicated, documented, and formatted. A data abstraction becomes less la-

tent as coherent details are identified, as its details are spoken or written, and as

its artifacts in a computer are actualized into relevant forms. For example, if you

have a table of addresses in a city, insight might be gained by thinking about those

addresses as a network, to see clusters of neighborhoods.

We also discovered these latent data abstractions were provocative. People had

strong reactions to our terminology and data abstractions. They did not like changes

in their mental models about their data, and these disruptions provoked discussion

that helped clarify terminology and what exactly they envision in the data set.

Introducing a data abstraction typology, a model that describes the space of possible

data abstractions and/or data wrangling operations, sparked discussion and elicited

more specific communication about the dataset and abstraction, even when the

typology was imperfect.

This work was previously presented at IEEE VIS 2020 and the published work

is available [13]1. The content has been modified slightly to fit the flow of this

dissertation. This work was done by Alex Bigelow, Katherine (Kate) Isaacs, and

myself.

This work was supported by the United States Department of Defense through

DTIC Contract FA8075-14-D-0002-0007, the National Science Foundation under

NSF III-1656958 and NSF III-1844573, and UA Health Sciences through the Data

Science Fellows program.

1doi:10.1109/TVCG.2020.3030355

doi: 10.1109/TVCG.2020.3030355
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Figure 4.1: A summary of study events over time, their temporal relationship with
memos, memo relationships with codes, and code relationships with themes. The
timeline at the top shows the timing of study events, with curved lines indicating
when individual memos were created. The four rows below the timeline indicate the
nature of the context in which memos were written, including Meetup attendance,
when data workers discussed their applied datasets, when the authors engaged in
theoretical discussions, and when the authors engaged in open coding. Rows C1-C24
show which memos directly informed the development of codes. Columns T1–T4
show which codes directly inform which themes.
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4.1 Introduction

Data abstractions are fundamental to a wide set of visualization activities, from

performing and documenting the provenance of data wrangling operations, to un-

derstanding the mental models of domain experts in design study research, to jus-

tifying design decisions in technique- or systems-focused research, and to reasoning

about the role of data abstraction in theoretical visualization research. Difficulties

in reasoning about and communicating data abstractions therefore have far-reaching

implications: effective communication about data abstractions is critically impor-

tant to the way researchers justify design decisions in technique- or systems-focused

research. A poor understanding of the mental models of domain experts in design

study research is a significant threat that risks creating solutions and systems that

do not address real needs [103]. Too much focus on a single data abstraction has

been observed to limit creativity [10] and to warp scientific analysis [8]. However,

the extent to which these effects apply, in terms of specific abstractions, is poorly

understood.

We set out to understand how malleable a data abstraction is, and to better

understand the process of pursuing latent data abstractions. We define a la-

tent data abstraction to be a data abstraction that is meaningful and useful, yet

undiscovered. It has yet to be fully elucidated, communicated, documented, and

formatted. A data abstraction becomes less latent as coherent details are identified,

as its details are spoken or written, and as its artifacts in a computer are actualized

into relevant forms.

Because there were blind spots in the questions that we should even ask, we

chose to conduct a grounded theory method investigation seeking to discover how

a diverse range of data workers, from spreadsheet users to programmers, across

different disciplines, consider different data abstractions. This investigation analyzes

memos, or research field notes taken during conversations, meetings, and interviews,

as well as the results of a deployed survey.

The result is an evidence-based set of codes and themes regarding data abstrac-
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tions with implications for how visualization project teams and individuals discover,

wrangle, manage, and report their data abstractions. In particular, we find that in-

troducing a data abstraction typology—a model that describes the space of

possible data abstractions and/or data wrangling operations—can elicit rich com-

munication and reflection about data and uncover latent data abstractions, even

when such a typology is imperfect. We show how visualization researchers can in-

crease actionable communication with data workers by introducing and critiquing a

typology together, as a visualization design activity [95].

The codes and themes in this paper also add to existing literature by explaining

some of the reasons why communicating about data abstractions can be so challeng-

ing. Reflecting on these themes and our collective interactions with data workers,

we provide guidelines for communicating with data workers about data abstractions.

These guidelines also have applications for more crisp communication about data

abstractions in design study, technique, systems, and theoretical research papers.

We have further made the raw data collected in our survey available through

an open interactive visual interface2 along with an archive of codes, themes, an

audit trail [24], and their revision history3 that summarize observations recorded in

memos from a year of interviews and meetings with diverse data workers, as well as

observations from the visualized survey responses.

In summary, our contributions are:

1. A set of themes, supported by codes, that describe phenomena associated with

data abstractions that arise in the processes of visualization design and data

wrangling (section 4.5),

2. Guidelines regarding the development of data abstractions (subsection 4.6.1),

3. The design of an open survey regarding the description of data and the mal-

leability of data abstractions (subsection 4.3.3, subsection 4.6.4), and

2osf.io archive of survey responses: https://osf.io/s2wmp/

Selected response visualizations are included in the supplemental material
3osf.io archive of codes, themes, and audit: https://osf.io/382fn/

https://osf.io/s2wmp/
https://osf.io/382fn/
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4. An open dataset of survey results with a corresponding interactive visualiza-

tion.

We begin by discussing necessary background and a review of related work (sec-

tion 4.2), and our methodology (section 4.3). We present the codes derived from

our study (section 4.4) and how they come together to form themes (section 4.5).

We follow with guidelines and reflections (section 4.6).

4.2 Background and Related Work

We discuss the theoretical underpinnings of our work (subsection 4.2.1), related

background in thinking and communicating about data in analysis and design

projects (subsection 4.2.2), the importance of documenting real-world wrangling

needs (subsection 4.2.3), and the context in which this work fits into research into

creativity (subsection 4.2.4).

4.2.1 Theoretical Underpinnings

This study employs a team-based [154], interpretivist form [153] of grounded theory

methodology, resulting in the development and refinement of four themes—these

four themes, with their supporting codes, comprise what is often termed a substan-

tive theory [101].

Interpretivist research has a different philosophical goal than the positivist re-

search that we typically see in the visualization research community [97]. Inter-

pretivist research aims to describe phenomena and generate hypotheses. This is in

contrast to the positivist approach used in the scientific method that aims to test

hypotheses. The four interpretivist themes that we identify, and their supporting

codes, are transferable, in contrast to the way that formal theories are generalizable.

Both intellectual traditions require systematic analysis of evidence, but the nature

of supporting data and the ways that data are collected and analyzed are different.

Grounded theory methodology was an appropriate fit for beginning this investi-

gation because our initial suspicions—that non-tabular data abstractions may be
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comprehensible, useful, and under-utilized among the broad population of data

workers—were very general and based on a small number of surprising observa-

tions [8, 11]. The nature of the questions that we should pursue were prone to rapid

revision and refinement as additional, surprising observations arose. Grounded the-

ory is an approach that is uniquely suited for investigating and describing phenom-

ena in which questions evolve rapidly, as themes are constructed by the data as it

is being collected.

Consequently, we used surprise as a principled way to collect data [101]; the ex-

tent to which we pursued interactions with data workers, and adapted and deployed a

survey, were motivated by identifying gaps in our own knowledge and unanticipated

findings. In contrast, we also used our lack of surprise as a qualitative indicator to

know when codes—or concepts that describe phenomena—had reached saturation,

and needed no further investigation.

In presenting qualitative research, we are careful of pitfalls [127] in our reporting

of numbers and counts: we include the full visualized corpus of survey responses2 to

maximize available context. Our numeric statements and visualizations are meant

to be interpretivist descriptions of the phenomena associated with how data work-

ers think and communicate about data abstractions, not positivist statements of

statistical significance.

Although this is not a visualization design study, Meyer and Dykes’ six categories

for judging and reporting rigor [97] are relevant for the kind of interpretivist research

that we present. This research is informed by our relevant prior research experiences;

reflexive in our efforts to constantly compare [27] collected data and gaps in our

understanding; abundant through the number of survey participants and diversity of

interview and Meetup participants; plausible through documented connections from

memos and survey responses, to codes, and to themes; resonant in that the themes

have broad implications for how visualization research is conducted and reported;

and transparent through the public release of the survey, its responses, and the

revision history of the evolution of our codes, themes, and relevant metadata.
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4.2.2 Thinking and Communicating About Data

We build on other efforts to understand how data workers think and communicate

about data. From the beginning of our research, our main focus has been to expand

understanding of one specific approach identified by Muller et al. [102]: how data

workers approach the design of their data, as opposed to discovery, capture, curation,

and creation.

Many authors have noted the designed nature of data abstractions [98], such as

the handcrafted nature of many cybersecurity datasets [80]. Feinberg observes that

the mere use of a dataset makes the user a designer of its abstraction [42], even

if many data workers may not be aware of their inherent flexibility. Consequently,

there is a need to learn to develop a “data vision” to exercise discretion and creativ-

ity in designing abstractions [112]. This is especially important in light of a data

designer’s ethical responsibility to structure data effectively [35], as the design of

what is measured and how it is stored can be overtly political acts [115].

The responsibility to design effective abstractions does not always fall upon data

workers in isolation. In the context of visualization design studies that involve

individuals with diverse roles and expertise, designing effective data abstractions

[103] and communicating effectively about those abstractions as they evolve [133],

are critical to the success of a project.

However, difficulties arise in effectively communicating about data abstrac-

tions [119]. There are myriad aspects to data abstractions in design projects, such

as adapting to data changes, anticipating edge cases, understanding technical con-

straints, articulating data-dependent interactions, communicating data mappings,

and preserving data mapping integrity across iterations [150]. These difficulties are

consistent with reports of there being surprisingly little documentation about the

design of abstractions [161, 162]. The lack of documentation makes human deci-

sions invisible and threatens future analysis. In strictly machine-learning contexts,

some authors have gone as far as suggesting that “de-emphasizing the need to un-

derstand algorithms and models” [113] may be an effective way to increase trust
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in model predictions. We show that the inverse is also true: that education and

transparency can foster healthy skepticism of data models and abstractions, which

can be important for fairness and provenance. We argue that transparency about

data abstractions can be especially important for data wrangling and visualization,

in which data workers need to “interact not only with the interface but with the

data” [150].

To facilitate communication about a particular project’s specific data abstrac-

tion, the visualization research community often relies extensively upon data ab-

straction typologies [104, 43, 28]. Currently, the main purposes of such typologies

are to guide a researcher in the selection of appropriate visual encodings, and to

support transferability across different design studies. However, aside from highly

contextual design study research itself, there is little data that reveals the extent to

which the visualization research community’s typologies are compatible with data

workers’ perspectives and language, and, although the interventionist nature of de-

sign study research is known [93], the effects of introducing foreign data concepts

have yet to be described in detail.

4.2.3 Data about Applied Wrangling Needs

Little applied data wrangling work has been published in the visualization commu-

nity, even though novel algorithms, data structures, and infrastructure need to be

implemented in ways that correctly address nuanced worker needs. Such efforts often

consume the bulk of the labor involved in applied visualization research [53, 75, 102],

and can include rich refinements in terms of task clarity and data location that ad-

vance science and constitute important visualization research contributions in their

own right [133], yet, without also engineering a polished visualization system, such

work has lacked clear publication venues.

The lack of such work leaves a major gap in needed visualization research. Al-

though our work includes a qualitative dataset that only begins to fill this gap, the

extent to which data workers use or even consider different data abstractions is still

difficult to analyze or test, as data wrangling decisions are rarely documented in
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research or in practice [161]. When such decisions are documented in research, they

typically only exist as justification for a visualization design; resulting in limited in-

formation about the data abstraction, its provenance, and important documentation

about how and why it was reshaped.

It can consequently be difficult to justify technique-driven or systems-focused

research into general-purpose data wrangling software systems [53, 75, 145, 57, 90,

135, 12], as such efforts often lack grounding in real user needs. Instead, they are

forced to rely upon past researcher experience, scant hints about real-world data

wrangling precedents that exist in design study literature, and speculation about

how data workers might think and what operations they might find useful. This

study, and future standalone publications that are focused on data transformations,

can help to better inform the design of such systems.

4.2.4 Creativity and Creative Roles

Discovering a latent data abstraction can have powerful creative benefits, such as

inspiring radical visual innovations [108, 94]. Although the work that we present

has implications for visualization researchers and their interactions with the broader

population of data workers, our primary objective is to compare and contrast sets of

creative objectives that can be held by any kind of data worker—including visualiza-

tion researchers themselves. Consequently, we identify the role of an abstraction

theorist that seeks to discover useful latent data abstractions, and contrast that

objective against the broad set of all other concerns that a data worker may need

to consider, such as data wrangling, data ownership, workflow management, the de-

sign and implementation of visualizations, evaluation, and reporting on visualization

research.

Contrasting these roles is similar in spirit to Von Oech’s popularized “explorer,

artist, judge, warrior” creative roles [146]: “theorist” and “worker” may refer to dis-

tinct individuals in a collaborative environment, such as a visualization researcher

and domain expert, or they could refer to different priorities that a single individual

is considering on their own. Therefore, we describe differences through a pragmatic
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lens, instead of attempting to analyze different populations’ creative styles or cog-

nition [136].

We add to precedents for pragmatic guidance for creativity in visualization

design, including the design of creativity workshops [51, 77] and creativity exer-

cises [95]—we propose the pursuit of latent data abstractions as an additional cre-

ativity exercise, specific to the design of data itself.

4.3 Methodology

The evidence upon which we base our findings comes from two sources: memos

and a deployed survey about data abstraction perspectives. It is important to note

that, consistent with our interpretivist objectives, many of the following methods

are deliberately uncontrolled—rather than testing hypotheses, our goal is to ask

better questions. Here we discuss both sources of data, and the way that they both

influenced, and were influenced by, our internal data abstraction typology.

4.3.1 Memos and Timeline

We wrote memos in four contexts: 1) regular attendance at data-centered com-

munity Meetups, 2) applied conversations with data workers in diverse contexts

about their perspective on their data, 3) theoretical discussions about data abstrac-

tions among the authors, and 4) collaborative open coding sessions. A summary of

all memos, their relationships with codes, and code relationships with themes, are

shown in Figure 4.1, and an associated audit trail [24] is available in the supplemen-

tal material.3

This project began with theoretical conversations about the nature of data ab-

stractions between the authors, that arose occasionally as part of regular meetings.

Early on, we decided to engage with an existing local Meetup group that regularly

met to seek or provide help with data: a core group of regular members met twice

per week at a coffee shop or bar, and continued to meet remotely beginning in

March due to social distancing measures. Members and visitors frequently brought
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laptops to show data and code that they were working with, to solicit advice or

help with debugging in a casual context. The core group and its frequent visitors

included a diverse array of researchers, administrators, and data scientists from the

local university and surrounding community. As these meetings and interactions

were largely ad-hoc, an accurate count of all potential informants is impossible to

report, however, a selected subset of these community members—those that pro-

vided specific information that informed the development of a code—are shown in

Table 4.1.

Later, as our survey was developed, it was deployed among this group, as well

as at the IEEE VIS and Supercomputing conferences. Each of the 219 survey re-

sponses are included in the supplemental material.2 Deployments of the survey often

prompted conversations that provided additional valuable insight that we added to

our growing set of memos.

As concepts and patterns began to be less surprising, the authors began to iden-

tify codes from supporting evidence, in a collaborative open coding environment

similar to the one described by Wiener [154]. After writing and agreeing upon a

framework for documenting codes in a version-controlled repository3, the authors

began to meet 2-3 times per week to discuss, refine, and write codes that we had

identified as we reviewed survey responses and our individual field notes. As we

discussed different patterns in the data, each author actively cited [100] supporting

personal experience, memos from a related interview, or specific survey responses

to support or contest the proposed code. Where personal experience was identi-

fied as evidence, additional memos were taken. As we began to observe broader

themes across codes, these were also written, discussed, refined, and connected to

codes. Finally, an audit was conducted to verify the nature of the source data, the

relationships between memos and survey responses to codes, and the relationships

between codes and themes; the result of the audit is visualized in Figure 4.1.
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4.3.2 Data Abstraction Typology Evolution

We began our investigation by adapting the data abstraction typology described

by Tamara Munzner [104] to a data wrangling context: our initial objective was to

describe a design space of possible data wrangling operations, so we modeled oper-

ations as edges in a complete graph, connecting each of five broad data abstraction

types, as shown on the left in Figure 4.2. Each edge represents a transition from one

data type to another; for example, network modeling tools [57, 90, 135, 12] would

largely support operations along an edge from “Tables” to “Networks & Trees.” Self-

edges describe wrangling operations that transform a dataset to a different form of

the same type, such as transposing the rows and columns of a table.

We quickly discovered many weaknesses of this model, through our own the-

oretical discussions and applied conversations with data workers. Most datasets

Table 4.1: Informants

Informant Role Domain

I1 Professor Medicine / Bioengineering
I2 Research Assistant Linguistics
I3 Postdoctoral Researcher Biology
I4 Research Director Information technology
I5 Professor Mathematics
I6 Research Director Interdisciplinary institute
I7 Professor Interdisciplinary institute
I8 Postdoctoral Researcher Information science
I9 Postdoctoral Researcher Biology
I10 Postdoctoral Researcher Biology
I11 Program Coordinator Interdisciplinary institute
I12 Postdoctoral Researcher Bioinformatics
I13 Professor Public health
I14 Professor Biology
I15 Professor Computer Science
I16 Professor Computer Science
I17 Research Assistant Computer Science
I18 Engineer Industry
I19 Data Scientist Industry
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Figure 4.2: The evolution of our data abstraction typology. Initially, we modeled
abstractions as fitting into five specific data abstraction types, with every node in the
complete graph representing a potential latent abstraction (left). Data wrangling
operations, such as converting rows in a table as nodes in a network, or perform-
ing dimensionality reduction of tabular columns in a high-dimensional space, are
modeled as directed edges that require changing to a non-tabular data abstraction.
As we engaged in applied conversations with data workers and designed our survey,
the specific categories in our typology evolved, as did its model. The final typology
models the process of considering a latent abstraction as a hyperedge coming from a
hybrid set of different categories to a new target latent abstraction (right), such as
imagining ways to cluster rows in a table based on columns containing geographic
information.

have elements or relevant metadata that could be described heterogeneously: with

more than one type of abstraction. Furthermore, many of the dataset types that we

initially selected were a poor fit for specific datasets, such as text corpora. These

weaknesses caused us to reflect on the overall purpose of such a model: one that

attempts to delineate all possible data wrangling operations may not be possible.

However, adapting it to be more flexible could potentially aid in the process of

exploring latent data abstractions.

Motivated by the weaknesses that we had discovered about our initial model,

we changed the focus of our investigation from modeling the space of possible data
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wrangling operations to investigating how malleable a set of identified abstraction

types can be in practice, and the extent to which enforcing a different perspective

on a real-world dataset can have creative benefits in its own right. We pivoted from

attempting to develop a model, to developing and deploying a survey. Consequently,

we do not present our preliminary data abstraction typology as a contribution, even

though it guided the development of the survey and it informs our codes and themes.

For our survey, we adapted our model to describe the act of theorizing about

an alternative data abstraction, instead of performing a concrete data wrangling

operation—although it could still reveal unmet needs for data wrangling tools, that

objective was no longer prioritized. We modeled these acts as hyperedges, also shown

in the right side of Figure 4.2, with the target alternative abstraction remaining

singular but allowing for any combination of source abstractions. This makes it

possible for survey participants to describe their dataset with any combination of

abstraction types, and yet still explore an abstraction type that may be less familiar.

4.3.3 Open-ended Survey Design and Deployment

We developed and deployed our survey in the form of an interactive web page. It

is designed in three phases, shown in Figure 4.3: after the first introductory phase,

the main phase of the survey invites the participant to describe a real or imagined

dataset, in terms of our data abstraction typology’s six broad data abstraction cat-

egories: tabular data, network / hierarchical data, spatial / temporal data, grouped

data, textual data, or media. Further details are requested from participants where

they indicate that they at least “rarely” interpret the data in terms of a particular

abstraction category.

The final phase of the survey chooses randomly from the abstractions that a

participant has indicated that they think about the least, and encourages them to

try to think creatively about their data with that abstraction. It solicits qualitative,

self-reported feedback on the extent to which the imagined transition is perceived

to be useful, as well as which software tools participants would be likely to use to

accomplish the transition.
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Domain Characterization

Consent

Contact Settings

About this survey

Your Responses

Initial Data Abstraction

Tabular Details

Network / Hierarchy Details

Spatial / Temporal Details

Grouped Details

Textual Details

Media Details

Initial Debrief

Alternative ___ Details

Reflections

Debrief

Basic Dataset Characteristics

Figure 4.3: An overview of the survey that we deployed. The survey is divided
into three sections, shown here as a flow diagram. The first section (A) includes
consent forms, contact settings, an introduction to the innovations in the survey, and
a summary of responses that redirect to the other two survey portions. The main
“Describe a new dataset” portion of the survey (B) invites participants to describe
a real or imagined dataset, and asks them to reflect upon the extent to which they
think about the dataset in terms of the six dataset types that we identified. Where
participants reply that they at least “rarely” think of their data in terms of a given
type, they are asked for more details in a specialized Details section of the survey.
The final “Explore alternative” portion of the survey (C) invites participants to
imagine their dataset as the type that they initially thought about the least, and
fill in the associated Details portion of the survey with this new perspective. As an
example, the Tabular Details interface is shown (D). Participants are encouraged
throughout the survey to look up terminology highlighted in red, where participants
can edit the terms and suggest alternative definitions in the glossary (E). In some
Details sections, participants are asked for a small sample of what they imagine the
data to look like, to help ground their thinking (F). At any point in a Details section
(G), or at the end of most other sections (H), participants can choose to skip the
section to provide targeted critique on the survey itself if the questions have strayed
far enough from the participant’s mental model.

Throughout all phases, the survey solicits meta-feedback about the survey itself.

Participants can challenge the survey design, questions asked, our set of possible data

abstraction categories, and the terminology that we used. The glossary is interactive,

allowing participants to provide alternate terms or definitions. Participants can also

skip sections of the survey that begin to ask questions that the participant feels have
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strayed from their perspective or use case.

We deployed the survey among three groups: attendees at regular community

data Meetups, attendees at the 2019 IEEE VIS Conference, and attendees at the

2019 Supercomputing Conference. Although the latter two groups had a less diverse

computing focus, we were aware of ongoing discussions about data abstractions

within these communities, and suspected that these groups were particularly likely

to offer direct critiques of our typology and approach.

4.4 Codes

Here we present the codes for phenomena that we identified in our collaborative open

coding process, with selected supporting evidence. For more detailed supporting

evidence for each code, see the supplemental archive.3 As there are 24 codes, we

present them as groups for readability, however, the analyzed themes presented

in section 4.5, and their relationships with codes, are more complex, as shown in

Figure 4.1.

Codes C1–C6 are based mostly on patterns that we observed in the visualized

corpus of survey responses.

C1. Compared to the diverse responses in how participants described

thinking about their data, the way that they characterized how it is

represented in a computer was disproportionately tabular. This disconnect

between the mental model and physical computer representation indicates not only

a possible need for new data storage or data wrangling tools but also a lack of

awareness of other data storage options. Data workers may default to tabular data

organization because it more easily fits into their current workflow and tools, or

because they do not know of existing “unconventional,” non-tabular tools.

C2. There was wide variation in reported dataset scales. Taken from

the median response for each of the “Basic Dataset Characteristics” questions

(e.g.,“Approximately how large is this dataset?”), the median dataset was on the or-

der of megabytes (close to gigabytes) in size, with thousands of items in the dataset
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and tens of attributes.

C3. Participants included broad techniques in their responses for wran-

gling tool support. When asked to actually transform their initial dataset into

the alternative abstraction type, most participants listed software tools or program-

ming languages but some listed techniques. These techniques included natural lan-

guage processing (“NLP, Python”, “Python, nlp techniques”), machine learning,

and mathematical operations (“cluster into connected components”, “Morse Smale

Complex”).

C4. Participants sometimes noted that they would need to ask a domain

or visualization expert for help in order to change data abstractions. Along

with techniques and software solutions appearing as answers to how the participant

would actually transform the data abstraction, some participants acknowledged they

either needed more information from a data theorist (e.g.,“Could be displayed as

a tree, I would hire someone”) or from a domain expert (“...would need to discuss

this in more detail with a domain expert...this data was not provided”).

C5. Participants sometimes noted that more information would need to

be collected and added to the data before transitioning to a different

abstraction. To transform their data from one abstraction to another, partici-

pants stated that they would need to collect additional data, such as images, speech

transcripts, recordings, and labels.

C6. There was a wide distribution of the tools and techniques that data

workers would use to wrangle data. Survey participants reported 54 different

tools by name, with many tools being unique to a single participant. Tools that

were mentioned by multiple participants tended to be programming languages.

Codes C7–C12 are based on evidence from multiple sources, and are suggestive

of unspoken perspectives, intuitions, and fears that may be common among data

workers.

C7. Even before the survey guided participants to alternative abstrac-
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tions, they discussed how they could see their data in other forms. This

manifested both in conversations with participants before they took the survey, as

well as in comments in the earliest sections of the survey before the question was

asked.

C8. Many data workers did not feel that what they work with “counts as

data.” This comment was a common refrain while soliciting survey participation

at both technical conferences, as well as through deployment across the university.

However, outside of the survey, three informants (I1, I2, I4) independently made

this observation while reflecting on their experiences working with people new to

Data Science. For example, I2 often runs a data science workshop in the human-

ities but it tends to get very low attendance—often the same three participants.

Seeing information as “data” may take a certain level of creativity and willingness

to experiment and fail. One Supercomputing survey participant working on hard-

ware design felt that treating circuit diagrams as “data” would be very strange, and

perhaps inappropriate.

C9. Thinking about alternative data abstractions can provoke fears of

scope creep. During a discussion with informants I6–I12, there was a consensus

that exploring alternative abstractions can be very beneficial for the success of a

project, however, it was also cautioned that it would have the potential to cause

misalignments in the vision of a collaboration—usually termed “scope creep.” Data

workers are often cognizant of the impacts that changes to the design of their ab-

straction will have, including considerations and costs that they may or may not be

able to articulate in detail.

C10. Data abstractions are often personal in nature to a data worker.

Based on prior experiences, such as designing a visualization with I6–I12, the authors

recognized that abstractions can be personal, subjective, and contextual. Wrapped

in an existing data abstraction are a data worker’s personal preferences, prior data

science knowledge, and domain knowledge. Thus, suggestions to change this ab-

straction are often met with feelings of confusion and resistance. Some of these
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emotions stem from concerns about additional work overhead, such as those iden-

tified by (C9). Other times, these emotions stem from the ecosystem of how the

data was created, the people it may impact, and the subjects of the data—all things

that a data worker may understand but a theorist may be unaware of.

C11. Data workers often have “gut feelings” or intuition about their

data as networks. Data workers, regardless of whether their data is known to be

network data or not, tended to have some intuition about the existence of networks

within their data, even if specifics such as the meaning of a node or edge were

unknown. Special types of networks, such as DAGs and trees, were also mentioned.

C12. Data workers often have “gut feelings” or intuition about their data

as clusters, sets, or groups. Similar to (C11), data workers also had intuition

about the existence of groups in their data. They sometimes referred to hierarchies

existing in and among these groups, and also intuited patterns and clusters in their

data.

Codes C13–C18 highlight informative weaknesses of our typology.

C13. There is wide variation in how data workers describe hierarchies.

There was some initial difficulty designing the survey when deciding where hierar-

chies should fall. Even among the authors, we recognized that one could describe

hierarchies as spatial, as networks, as nested sets. We questioned whether a tree and

a hierarchy are the same thing, but concluded they have semantic differences. In the

final survey, hierarchies were grouped with networks as a “Network/Hierarchy” ab-

straction type, with “Hierarchy” chosen deliberately to seek feedback. This diversity

of perspectives was confirmed; one participant commented that they more closely

align hierarchies with groups: “I find the separation of hierarchies and groupings to

be a bit problematic for this domain. Many codes, such as diagnosis codes, exist in

a hierarchy (defined by metadata). However it is quite common to refer to areas of

this hierarchy as groupings.”

C14. Most datasets did not fit in one category, and participants talked

about not just the raw data, but derived values, metadata, or even “mul-
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tiple datasets.” Participants often selected multiple data abstractions in response

to the initial question of categorizing their dataset. Heterogeneous datasets are very

common, such as when metadata takes a different form from the main dataset, or

when one dataset is a nested “value” inside another of a different type.

C15. “Media” as a category had a less well-defined mental model, re-

sulting in a space with too little structure for participants to map their

data crisply when forced to think of their data as “media.” When asked

to consider media as an alternative abstraction, a common response was to imagine

screen-capturing to record images and video of a visualization of the data. But

thinking of their data in this way elicited feelings of discomfort from some partici-

pants; comments such as: “This is weird. I think of the data not as media but I’m

actively trying to turn it into media” and “I have displayed this data by mapping

some of it [to color channels in a heatmap], but I don’t consider the data itself to ‘be’

media or ‘have’ media.” Some data workers understand some sort of inherent visual

quality of their data. For example, one response was “The data set itself does not

include any media, but interpretations of it are visual in nature... The data could be

illustrated by addition of multidimensional images or 3D meshes when interlinked

with concepts in the graph.”

C16. Even very technical data workers find some data abstraction con-

cepts, language foreign. We noticed confusion and misunderstanding surround-

ing our abstraction terminology; notably, terminology surrounding tabular data

(e.g., items, attributes) was unknown to one Supercomputing participant and needed

to be related to the physical spreadsheet (e.g., rows, columns) to clarify. This dif-

ference in theory-based thinking and practice-based thinking shows that there is a

disconnect between how visualization people talk about data, and how data workers

in general talk about data.

C17. Many data workers consider functions to be data. One unexpected

finding, after reviewing responses aligning with (C8), was that a subset of par-

ticipants recognize functions as data. These datasets include continuous models,
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functions like regression models from housing data, collections of partial differential

equations, or constraint data for linear or integer programming, which I5 and one

author did not consider to be “spatial” as defined in the survey.

C18. Many data workers consider code to be data. As part of a larger

discussion about open science and data sharing, several informants noted that code

should be considered data. At a minimum, code acts as “metadata” by providing

provenance of where a given dataset came from. As I6 noted that, “one person’s

metadata is another person’s data.”

Codes C19–C21 describe the different ways that it was difficult to focus conversa-

tions with data workers on the design of a data abstraction.

C19. The design of a data abstraction proved difficult to talk about in

isolation from specific file formats. Related to (C16), some survey participants

misunderstood the connection between an abstraction and its implementation (e.g.

a table vs. a spreadsheet). As a result, in response to our request for “Other

Generalizations,” they suggested file formats that were clear fits for our existing six

abstractions such as: “directed graph represented in a format such as dot” instead of

Network/Hierarchy, “CSV file” instead of Tabular, “a collection of free text” instead

of Textual.

C20. The design of data abstraction proved difficult to talk about in

isolation from software and programming language abstractions. One au-

thor noted difficulties in focusing conversations on how a person thinks about their

data; informants frequently pivoted to talking about abstractions imposed by soft-

ware that were often only loosely associated with the data model itself, such as git’s

model of remotes and branches, or Jupyter’s statefulness.

C21. The design of a data abstraction proved difficult to talk about in

isolation from discovery, capture, curation, and creation. [101] Discussions

often detoured from data design to topics such as data provenance and other data

wrangling concerns. Similarly, when prompted to transform their data from one
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abstraction to another, some participants suggested collecting entirely new datasets,

rather than transforming the existing data.

Codes C22–C24 describe things that appeared to aid reflection and communication

about data abstractions.

C22. Showing real data, such as a spreadsheet, helps data workers and

theorists communicate effectively about data abstractions. Many different

interactions at community meetups, such as with I3 and I19, were enhanced by the

culture of bringing laptops to show data and inspect it together.

C23. Data abstraction typologies help data workers discover latent data

abstractions. Asking questions about a data abstraction and how it fit, or did

not fit, into a typology helped expand data workers’ view of their dataset. One

participant noted: “The questions made me think more about ‘the nature’ of this

dataset. I had always considered it to be ‘just tabular’ but I realize that there is a

hierarchy and geographic data (and a geographic hierarchy) which I hadn’t really

considered before. As I type this, we could layer in time and sets when considering

multiple elections.” Data abstraction typologies can help data workers discover

underlying latent abstractions, like hierarchies, or how visualizing their data with

additional data abstractions may augment understanding, like adding images to

patient records.

C24. Data abstraction typologies help data workers communicate at a

sufficient level of detail to design a visualization system. We observed this

directly with I6–I12. A survey participant also noted that the mental exercise of

the survey “prodded me into thinking about my annotations as more of a central

player in the overall visualization as opposed to a secondary thought or support-

ing contextual element.” Discussing abstraction typologies helps create a common

data design language and reinforces the value that both sides (the data worker and

visualization designer) bring to the data problem.
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4.5 Themes

Together, these codes form four overarching themes, including the prevalence of

latent data abstractions, the interventionist impacts that pursuing latent abstrac-

tions can have, why many data workers may express hesitancy to pursue latent

abstractions, and the benefits that transparency about data typologies can have

for the latent abstraction discovery process. Here, we enumerate the evidence that

supports each theme.

T1: Latent data abstractions are very common. At least initially, raw

data formats are not designed in such a way as to anticipate all abstractions that may

be needed or useful, yet even though these abstractions may not be fully actualized

in a computer, data workers are often aware of meaningful, useful abstractions

that they can communicate about without specific prompts (C7). Some of these

abstractions, particularly networks (C11) and groups (C12), are very intuitive to

many data workers.

This theme validates a known [133, 10] phenomenon that data rarely has a

“correct” abstraction, even where predominant file formats exist; we observed that

discrepancies between raw file formats and the way that a data worker thinks about

their data are common (C1). Instead, data abstractions have a complex and evolv-

ing form (C14) that must be explicitly designed.

The designed nature of data abstractions makes it important to note that neither

data workers nor theorists possess comprehensive knowledge of all possible latent

abstractions, and open-minded communication is necessary for meaningful, useful

abstractions to be discovered. This is true for both parties: theorists are often

aware of abstractions that data workers might not consider to “count” as data (C8).

Similarly, data workers may be aware of abstractions that theorists do not consider

to “count” as data (C17) (C18). Data workers and theorists may also think about

the details of the same abstraction differently (C13). Introducing a typology of

data abstractions can expose abstractions that neither party has considered, in that

a typology can contain new abstractions that data workers may not be aware of, or
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they may lack new abstractions that theorists have not considered (C23).

T2: The visualization community identifies data abstractions for its

own transferability needs, but the process of identifying an abstraction is

an intervention with far-reaching effects. Collaborations with data workers be-

yond the visualization research community stand to benefit—and can be harmed—

by the way that both parties introduce, articulate, and explore data abstractions.

Our data validates that visualization researchers, as theorists, are not operating

in a vacuum; some abstractions that are common in the research community are

intuitive to many data workers (C11) (C12).

However, although these commonalities may be good news for the validity of the

work that visualization researchers perform, there are also areas in which the culture

of visualization research clashes with data workers at large: there is a often a dis-

connect between what theorists consider to be data and what data workers consider

to be data (C8) (C17) (C18). Disconnects also occur between the language that

theorists use to describe data, and the language that data workers use (C16). These

differences in culture risk miscommunication at best, but also may put a project at

risk of devolving into a bad collaboration, where either the goals of the theorist or

the goals of the data worker become subordinate.

Consequently, for better or worse, introducing a theoretical perspective is almost

always an intervention, and the effects of such interventions can be profound. Be-

cause the design of data abstractions is so inextricably linked to the other concerns

of data discovery, capture, curation, and creation (C21), changes to the design of a

dataset can result in changes to all of its other aspects. Similarly, influencing a data

worker’s mental model of their data can have far-reaching practical effects, including

disruptions in workflows and changes to the file formats (C19) and software (C20)

that data workers use.

Data workers are often cognizant of the impacts that changes to the design of

their abstraction will have (C9), even if they may not be able to fully articulate

these impacts in detail (C10).

This is why we predict that T3: data workers are less willing to pursue
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latent data abstractions when the design of an existing abstraction is

already fundamental to their workflow. When there exists a direct mapping

between familiar software and the format of the raw data, efforts to introduce a new

abstraction will likely be met with resistance.

The costs of a changed data abstraction design can include a need to learn new file

formats (C19) and new software (C20) that may come with the need to learn new

software skills such as programming. The tight coupling between data abstractions,

workflows, and software can be seen in the bespoke wrangling software needs that

arise from the combinatoric expansion of diverse abstractions, diverse workflows, and

diverse dataset scales (C6) (C2). However, the added cost is reduced when software

practices have not yet been established and investments in learning new skills have

not been made. This cost can also be mitigated when theorists are willing and able

to provide expert help (C4), such as wrangling the data to its needed forms.

Similarly, the costs of pursuing latent data abstractions can propagate to other

data concerns (C21), such as the need to collect additional data (C5). The fears

that data workers often feel (C10) and voice (C9) are suggestive that data abstrac-

tion changes can spill over into task abstraction changes that may begin to depart

from data workers’ actual needs. This potential cost can actually be an opportunity

if care is taken to solicit critique whenever theoretical perspectives are introduced,

as such introductions often encourage data workers to provide detailed information

about their mental models that they might not otherwise articulate.

Theorists need not wait for such impositions, however, to solicit this kind of

targeted feedback. T4: Like access to real data, introducing a data abstrac-

tion typology helps to focus reflection and communication about data

abstractions at a level of detail that includes actionable information.

Our data (C22) validates the known pitfall [133] in which the lack of access to

real data can doom a design study collaboration, because visualization researchers

are less likely to have enough actionable information to articulate an accurate data

abstraction. It also validates that a culture of data review [156], that is careful to

emphasize good communication and transparency about the data abstraction, can
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compensate for a lack of access to real data because the detailed abstraction is a

joint objective that all parties have a stake in.

When theorists take the time to be transparent about their agenda, includ-

ing the typology that they are attempting to fit a worker’s data into, revealing

the typology can have similar benefits in that it helps a data worker understand

what a theorist is looking for (C24). Introducing typologies can expose data work-

ers to latent abstractions that they may not have considered (C23), and provides

an opportunity to provide detailed feedback that might otherwise be left unspo-

ken (C17) (C18) (C13). For example, introducing a typology that is a poor fit in

how it subdivides data abstraction categories can serve as an aid to communication,

in that it can highlight the detailed ways that a worker considers their data to fit

or partially fit more than one abstraction category (C14).

Not all shortcomings of a typology are equally beneficial, however. Data abstrac-

tion categories that are too general (C15) or rely too heavily upon jargon (C16)

may have limited utility. These limits are highly contextual, for example, a typology

that differentiates between partitions of an abstract mathematical space and regions

of a physical three-dimensional space might be useful for a data worker with a rich

mathematical background to reflect upon; however, for a worker with less mathe-

matical training, the amount of unfamiliar jargon introduced could inhibit detailed

feedback.

When introducing a data abstraction typology as an explicit design activity [95],

care should be taken to choose a typology with an appropriate level of granularity

and enough accessible concepts to encourage feedback and critique.

4.6 Discussion

The codes and themes that we present describe phenomena that are suggestive of

guidelines for theorizing about data abstractions. Additionally, it has implications

for reporting data abstractions in many kinds of visualization research. We also

reflect on our experiences and their implications for the design of data abstraction
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typologies, and lessons learned from our innovations in survey design and deploy-

ment.

4.6.1 Guidelines for Pursuing (Latent) Data Abstractions

Reflecting on the presence of latent data abstractions (T1), the interventionist

nature of defining data abstractions (T2) and in some cases the resistance to it

(T3), and the focusing power of typologies (T4), along with our coded findings in

section 4.4, we proffer the following guidelines:

Data owners and abstraction theorists should collaboratively probe raw

data. A typical design workflow may have data owners describe their data syn-

chronously and then give one or more data files to the abstraction theorists for

later review. There are several surfaces of loss in this approach, in which latent

information remains latent. Data owners may forget to review elements of their

data. Abstraction theorists may make assumptions given the data file that are only

revisited much later, if at all. Instead, we recommend that initial meetings with

data owners involve the presentation and collaborative probing of at least one raw

dataset.

Abstraction theorists should introduce the typology and process that

they follow. Just as theorists can feel lost without exposure to the raw data, data

workers can feel lost when theorists attempt to fit a worker’s project into an opaque

typology or framework. For example, if a worker does not understand, at least at a

basic level, that a theorist is attempting to identify relevant data abstractions before

considering visual encodings, workers are forced to second-guess the theorist’s needs.

In such a situation, discussing their data in terms of potential visualization designs

may appear to be helpful. As theorists request that workers provide at least one

raw dataset, theorists should also reciprocate by preparing and presenting sufficient

background about what they are hoping to learn or observe.

Create artifacts that document and convey abstraction details and

demonstrate possible permutations. We discovered that even in discussion
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among the authors, people who had a close working relationship and were operating

from the same typology, there were times when we believed we were discussing the

same abstraction of the data, only to discover we had completely different assump-

tions once drawings or classifications were made explicit. Explicitly stating ideas

serves as not only a communication aid, but also as a method to explore the cre-

ative space of possible abstractions and as documentation for resulting abstractions.

Furthermore, writing or drawing such low-level details can be an effective strategy

to ground a derailed conversation and refocus it back on the design of the data.

Challenges are an effective means of probing. They require an artifact to

be challenged. Throughout our interactions with data workers, we observed that

suggesting a concrete abstraction, particularly one that was unlike how the data

worker usually conceptualized their data, elicited rich feedback about their data

and their thinking on it. Responses beginning with phrases like “That wouldn’t

work because...” or “That makes no sense” were precursors to valuable reflections

on their data. Setting up such a response requires some form of artifact, verbal,

pictorial, textual, or otherwise to be challenged. We recommend such situations

be approached sincerely as an honest, creative exercise towards considering other

forms.

Typologies can serve as a guide to elicit latent elements of the data ab-

straction from data workers. A given typology may not fit all elements of a

particular problem and dataset. However, it provides a corpus of possible abstrac-

tions with which to consider the data. These possibilities can serve as a jumping

point to discuss and challenge possible abstractions of the data. Through our sur-

vey and interviews, we observed that discussions of fitting the data to various forms

evoked more detail about the data itself as well as provided structure to exploring

possible alternative abstractions.

Document and share the provenance of datasets. It is appropriate that a

visualization and analysis solution operates on a brief period of a dataset’s lifecycle

and often only a subset of all possible data available. However, it is beneficial to
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document the latent elements of the data beyond that directly used by that solution.

The source of the data, the transformations it has gone through, and related data

all provide context. This context can be used to better understand how the data

worker, who is more familiar with all of these elements, conceptualizes the dataset.

Assess opportunities inherent in derailments. The space of (possibly latent)

data abstractions is vast in comparison to the minimal data abstraction represented

in a visualization project. In following these guidelines, it can be easy for both

theorists and workers to feel that the discussion has become derailed: workers may

begin to discuss other data concerns such as data discovery, capture, curation, or

creation. Workers may also discuss specific software or even prematurely begin to

volunteer visualization encodings and techniques. Similarly, theorists may appear

to be exploring esoteric concepts that do not have a clear application to a worker’s

project, and their explorations may threaten to add unnecessary labor to a worker’s

workload.

These derailments can be an opportunity to gain insight: First, discussing the

design of a dataset has a tendency to prompt communication of important low-

level information—even if seemingly unrelated—that workers would not otherwise

bring up. Second, workers may actually be speaking on topic, but using seemingly

irrelevant language about formats, software, or visualization as proxies that can be

revealing about domain conventions or language, as well as revealing a need for the

theorist to be more transparent about what they are looking for. Third, seemingly

irrelevant topics may be indicative of a high-level mismatch of objectives, differences

in perspective, or other miscommunications that could otherwise go unnoticed.

Actively seeking critique from data workers can help to identify a theorist’s own

derailments. Once derailments are identified, ascertaining the extent to which any

of these three opportunities exist can help guide a theorist as to whether, when, and

how to attempt to recenter the conversation.

Document objectives and revisit them regularly. Collaborators often

have different high-level expectations, ideas, agendas, and sub-goals/tasks. This
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is complicated by the potential for a latent abstraction—even considering one

hypothetically—to change collaborator perspectives and goals in ways that may not

be communicated immediately. We recommend documenting the objectives of the

project, and revisiting those objectives, especially when derailments are indicative

of high-level mismatches.

Schedule interventions to revisit data abstractions. The above guidelines

discuss how to make the latent apparent, but require the latent exist in the minds

of people or the artifacts (e.g., the raw data) available. However, over the course

of the project, all people involved may discover new facets of the data or incorrect

assumptions previously made. Sometimes these discoveries lead to immediate inter-

vention, but sometimes they expand the latent space. We recommend scheduling

time to revisit, challenge, and refine data abstractions, given possible discoveries

that are latent.

4.6.2 Implications for Reporting Data Abstractions

Our data suggests that providing the expert help that many data workers need can

make visualization researchers more effective collaborators. Until recently, as we

discuss in subsection 4.2.3, performing, documenting, and reporting on this kind

of work may have been difficult to accomplish by itself, even though there is a

great need for published guidance and experience to inform many different kinds of

visualization research.

We expect performing and reporting on detailed, applied data wrangling work

better equips visualization experts to collaborate effectively. Recent acknowledge-

ments of “Data Transformation,” [105] “Data Abstraction,” and “Data Struc-

ture” [86] as potential standalone contribution areas may aid in these efforts. We

also suggest that such reports may be able to help ground technique- and systems-

focused research in more evidence-based user needs.
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4.6.3 Implications for Designing Abstraction Typologies

Our experience in attempting to apply the same data abstraction typology to a

diverse array of data workers and datasets revealed wide variability in the extent to

which typologies are likely to fit a particular context—both the diversity of datasets

and the diversity of data worker expertise and perspectives can risk a poor fit.

Our data shows that this is not necessarily problematic. It demonstrates how

typologies can be useful in pursuing latent data abstractions despite—and, in some

circumstances, because of—their limitations. In the spirit of the observation that

“all models are wrong but some are useful” [17], shortcomings of a typology can

create opportunities to aid in detailed communication and reflection that might be

less likely if the typology were a perfect fit.

This also suggests that typologies may not scale well for purposes beyond the pur-

suit of latent data abstractions: typologies must generalize in order to be tractable

and support comparison, however, generalizations fundamentally censor diverse, in-

dividual voices and risk stifling important exceptions and innovative thinking. Our

corpus of survey responses demonstrates a way that a conversation about the nature

of data abstractions can be conducted at scale, in a way that balances the need for

generalizability, while giving priority to individual viewpoints and grounding discus-

sion in the context of real-world applications. In the way that our survey explicitly

sought critique on the typology that we presented, it allowed for enough organiza-

tion to visualize, compare, and contrast hundreds of viewpoints, while giving wider

freedom for participants to engage directly with the theoretical questions implicit

in the design of the survey.

4.6.4 Reflections on Survey Innovations and Deployment

Unlike typical surveys that primarily collect quantitative information for well-defined

questions, our main objective in deploying the survey was to probe for blind spots

in our own understanding of what data abstractions exist, and how data workers

think about them.
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Consequently, we sought to create a survey that was as open-ended as possi-

ble. Closed questions are therefore least ideal, as they provide zero opportuni-

ties for a participant to signal to researchers that the researchers may have missed

something—researchers have to anticipate every possible response [122].

Open-ended, free response questions at least make it possible for participants to

submit critique, but because they’re expensive to code and analyze, and because

they introduce more survey fatigue, they often take the form of a single comment

field at the end that are only used as an “outlet” for participants, rather than a

prioritized source of data [48].

The extent to which participants freely made use of the ability to skip survey

sections suggests that this approach has several benefits. Replacing a whole section

of a survey with a single free response field appears to help mitigate survey fatigue.

The free response field is at least as open-ended as regular free response questions,

and consequently incurs no additional analysis cost. The act of stepping outside the

normal flow of the survey appears to have encouraged participants to think about

the design of the survey itself, and in some cases, engage at a theoretical level that

more closely resembles a forum than a survey.

In contrast, our interactive glossary did not appear to have garnered as much

attention or use—this may have been due to its placement outside the flow of the

survey, and/or its position in the corner of the screen.

The survey innovations created opportunities to improve our understanding of

what data abstractions exist, what terminology is actually used by diverse data

workers, to refine the evolving themes, and we expect it will inform future iterations

of the survey.

4.7 Limitations and Future Work

Here we document the limitations of the survey that we present, our intent to

deploy it to a broader audience, and suggest future uses for the dataset that we

have released.
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4.7.1 Survey Design and Evaluation

The archive of survey responses that we present is not without typical technical

difficulties. One major drawback of its design was that the length of the survey

varied, depending on the difference between “rarely” thinking about a dataset as

a certain type and “never.” This resulted in some participants filling out lengthier

surveys, who began to show signs of fatigue. Additionally, a question in several of

the Details sections had a bug that failed to capture the data completely. Finally, as

participants almost always took the survey on their own devices, connectivity and

browser incompatibility issues, especially for specific iOS devices, occasionally arose.

These challenges, together with a small number of responses in which participants

appeared to abuse the ability to skip sections, etc., resulted in a set of questionable

responses that we have flagged.

Rather than suppress these errata, they are included in the archive of the data,

and documented in context in the visualized summary of each question. The set of

questionable responses can also be interactively filtered out.

As the survey design itself is not our primary contribution, we have only evalu-

ated the extent to which our innovations were effective in achieving our qualitative

aims. We can not speak to whether they are effective ways to solicit critique from

participants in general, nor engaging enough to encourage theoretical reflection at

the levels that we observed.

4.7.2 Further Survey Deployment

The feedback that we collected may also have been influenced by the groups where

we deployed the survey and wrote memos about our observations. The populations

we engaged with during this study all had a high interest in computing: domain

scientists who come to hacking-oriented meetups and attendees at computing con-

ferences. Although the Supercomputing conference has thousands of attendees who

are there for reasons other than the technical program, in some interactions, we

had difficulty convincing those people that their data counts as “data.” Thus, our
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data and subsequent findings are lacking representation among people who do not

identify with data.

Effectively engaging people with less overt interest [114], that may not share the

goals represented by our “data worker” persona, is an ongoing effort that we hope

to pursue in future work. Subsequent survey deployment and memo writing will

target more diverse data perspectives and skill sets, by networking with people from

non-Computer Science backgrounds. For example, Meetup attendees have already

referenced ongoing discussions about data abstractions in a paleontology community.

They are considering how to best match and connect competing ontologies from dif-

ferent sources. Similarly, we have been connected with a group of vehicle mechanics

that are adapting their tables of diagnostic metrics to changes introduced by in-

creasing numbers of electric vehicles. Other potential domains include linguistics,

sociology, bioinformatics, construction equipment and manufacturing, and athletics.

We intend to advertise and deploy our survey to more diverse groups of data work-

ers, through academic and professional conferences, at relevant community Meetup

events, and through word of mouth.

4.7.3 Data Reuse

We have released the public portions of the survey data in a visual, searchable format

as a standalone research contribution, so that individual voices can be heard and re-

viewed by researchers studying similar phenomena, beyond our research aims. Such

aims might include creating terminology maps across domains, using evidence in our

survey responses to motivate and justify the design of general-purpose visualization

and data wrangling tools, and other analyses.

4.8 Conclusion

Our grounded theory investigation into the malleability of data abstractions has

resulted in themes that describe data abstractions and their implications for visual-

ization design, guidelines for the development of data abstractions, the design and
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deployment of an open survey, and a corpus of survey responses that represent a dis-

cussion about the nature of data abstractions at scale. This work has implications

for how data abstractions are reported, how typologies are designed and discussed,

and may inform future efforts to seek critique through the deployment of surveys.

Ultimately, this work sheds light on why thinking and communicating about data

abstractions can be difficult, and shows how to best take advantage of opportunities

inherent in that process, as well as mitigate its risks.
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Family and Friends Summary: In the tree visualization from section 3.8, we chose to

omit some lines and visually present the data as a tree, instead of a graph, because

our users knew the underlying data was a graph but found the tree to be a more

streamlined view of the data. This situation became part of larger discussions about

how easy it is to change data abstractions. A data abstraction is way to generalize a

specific dataset into a more abstract form. For example, a list of contacts in a phone

can be generalized as a tabular data abstraction, i.e. a table of names and phone

numbers. Visualization designers know how to create visualizations from tables, so

they can tweak an existing solution for this specific case. Alternatively, the list of

contacts could be cast in a network or graph data abstraction, where each node is a

person and their phone number, and edges between people represent relationships.

We were curious if data experts would find it useful to think about their data in a

different abstraction, like with the phone contacts. To investigate, we interviewed

and surveyed data workers and asked them to consider different data abstractions

for their dataset. We found that the participants often could think of their data

in an alternative data abstraction (a latent data abstraction), but were not always

aware that this alternative existed. Our data abstraction options (i.e. our data

abstraction typology) was a helpful starting point for these discussions, and occa-

sionally provoked strong reactions. The data workers found these discussions and

latent abstractions to be useful, but admitted they were less willing to pursue the

alternative abstraction since it did not fit into their existing workflow. This work

has implications for how data visualization designers discuss data and explore data

abstractions with their users.
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CHAPTER 5

Data Abstraction Elephants: The Initial Diversity of Data Idioms and Mental

Models

The elusive nature of data abstractions and their implications for a dataset means

that for visualization designers, the choice of data abstraction can significantly im-

pact how our users understand a data visualization. A visualization designer may

choose one data abstraction as the basis of the visualization, but the users may

think of the data in a different data abstraction. For example, the user may give the

designer a tabular dataset. However, the user may understand connections between

the data that are not explicitly in the file provided to the designer. These hidden

connections may be best represented for this user as a graph or network.

This scenario reminded us of two stories involving elephants. The first is the

parable [139] of the five people in the dark who encounter an elephant for the

first time–they all touch a different part of the elephant and come to a different

conclusion. The person who feels the tusk says the elephant is hard and smooth like

a spear, and the one who touches the leg says the elephant resembles a tree trunk.

This story mirrors how each person may have a different mental model of the data,

shaped by their prior knowledge, expectations, and inferences.

The second is Von Neumann’s purported observation, “With four parameters I

can fit an elephant, and with five I can make him wiggle his trunk;” in other words,

the data can be made to fit what we want to see. These stories implicate possible

pitfalls that can arise when applying different data abstractions.

In this chapter, we seek to understand the space of data abstractions used in

mental models and how well people communicate their personal mental models

through sketching and discussion. The choice of data abstraction has significant

impact on the visualization design [103], yet it is unclear how universal this choice

may be when not influenced by the initial data representation.
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We conducted a study of how people create their mental models from a dataset.1

We presented each participant with one of three datasets in paragraph form so

as to avoid any visual cues that may influence the data abstraction and mental

model. We observe a variety of mental models, data abstractions, and depictions

from the same dataset (see Figure 5.6). This diversity was influenced by several

factors including examples the participant had recently seen, common approaches

to the data, imagined purpose-seeking tasks, and their definition of what “data” is.

We also observed participants re-configuring their mental model and sketch when

considering describing the data to another person, and they used a variety of terms

to describe the data and sketches.

Our results have implications for visualization design, especially in the discovery

and data collection phases when eliciting descriptions of data. We propose lever-

aging the data design process to further probe user needs and suggesting alternate

perspectives to users to elicit possible abstractions.

This work was previously presented at CHI 2023 and the published work is

available [155]2. The content has been modified slightly to fit the flow of this dis-

sertation. This work was done by Alex Bigelow, Katherine Isaacs, and myself and

was supported by NSF-1844573.

Figure 5.1: We created three datasets that permit a variety of different data ab-
stractions. The file system dataset sketches include hierarchies and nested sets. The
junk drawer dataset sketches include bar charts and drawings of the physical ob-
jects. The power station dataset sketches include tables and node-link graphs. We
found a variety of data abstractions across each dataset.

1Our session notes and participant sketches are at https://osf.io/kvnb9/
2https://doi.org/10.1145/3544548.3580669

https://osf.io/kvnb9/
https://doi.org/10.1145/3544548.3580669
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5.1 Introduction

A viewer of a data visualization brings their wisdom, experiences, biases, and inter-

ests to their viewing. This internal knowledge and their understanding of the data

visualization comprise their mental model of the visualization [58]. A mental model

is a personal understanding of a topic that may consist of representations of objects,

background knowledge about the topic, and connections to related topics. In the

field of data visualization, research has been done on mental models arising from

dashboards of political data [131], trees and hierarchies [163], social networks [137],

and scientific visualizations [142]. But what about the mental model that exists

before the visualization is made, when the visualization designer and the domain

expert are discussing the dataset? As visualization designers, what steps should we

take to elicit and understand our viewer’s mental model and how should we design

following that mental model to maximize understanding and utility?

For visualization designers, our usual starting point with a new dataset is to

connect it with an existing data abstraction, like a table or a network. A data

abstraction is a mapping of domain-specific data to an abstract data type [104]. By

selecting a data abstraction that has been repeatedly used and refined, we narrow

the scope of possible visualizations to create and increase the likelihood of success

by building on others’ prior work in visualization. A data abstraction provides

an intermediary for the designer and viewer, providing a structure for the viewer’s

intangible mental model and guiding the designer toward visualization design choices

that will resonate with the viewer. However, often there is more than one data

abstraction that may work for a given dataset. The same dataset may be initially

matched with a hierarchical data abstraction, but a set data abstraction could work

instead. While sometimes there is a better data abstraction choice for a dataset,

more likely there is simply an alternative data abstraction that provides different

insights.

The variety of abstractions and their implications for visualization reminded us of

two stories involving elephants: the parable of the five people in the dark, reaching
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different conclusions about the nature of the elephant; and John von Neumann’s

overfitting of data to an elephant, whether or not the data truly represents one.

The parable, which has appeared in Hinduism, Jainism, Sufism, and Buddhism

[144], describes five people who are unable to see encountering an elephant for the

first time. Each person touches a different part of the elephant and comes to a

different conclusion. For example, the person who feels the tusk says the elephant is

hard and smooth like a spear, and the one who feels its side thinks it is like a wall.

Von Neumann’s purported observation was, “With four parameters I can fit an

elephant, and with five I can make him wiggle his trunk;” in other words, the data

can be made to fit what we want to see.

These stories reflect possible pitfalls when applying data abstractions to a

dataset. The first reminds us that each person may have a different mental model of

the data, shaped by their expectations, prior knowledge, and inferences; this men-

tal model impacts their preferred choice of data abstraction. The second reminds

us that an individual, perhaps a data visualization designer, can force-fit a data

abstraction where it may be unhelpful or misleading. With these pitfalls in mind,

we set out to better understand the breadth and form of data abstractions arising

from people’s mental models and how they communicate their mental models before

they are influenced by abstractions or representations chosen by other parties. We

seek to build a foundational understanding to drive more concrete guidelines and

methodologies for eliciting mental models and exploring data abstractions during

the design phase of visualization design [133].

As visualization researchers, we recognize that our users may have mental models

of the dataset that could prove to be valuable resources to leverage during the design

process. Often in the case of design studies, we are creating a visualization tool

where none has previously existed. The only mental model the user has is one of

the data space and their interactions with the dataset. The user’s mental model

may include aspects of an insufficient visualization that serves some but not all of

the user’s needs. In situations like these, the data and tasks are often still fluid and

need to be stabilized.
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This instability in the data and tasks during the initial stages of the design

process can be beneficial, as it provides more options to explore and does not impose

a bias on the design. As we show in this paper, the creativity and lateral thinking

shown during our interviews about mental models of datasets suggest that domain

experts can offer creativity coupled with domain knowledge that could lead to more

productive brainstorming and collaborating early in the visualization design process.

However, the best practices for eliciting mental models of data and incorporating

their related data abstractions in visualization design are unclear.

As a visualization community, we would like to develop more concrete guidelines

and methodologies for eliciting mental models to help steer our data abstraction

choices. However, we need to understand fundamentally how internal representa-

tions of data are translated to external representations and how difficult pinning

down that mapping can be. To begin, we consult existing literature on mental

models and their elicitation in areas like education, natural resource management,

artificial intelligence, cognitive science, and psychology.

Mental models are notoriously difficult cognitive phenomena to elicit [31]. Klein

and Hoffman describe the multitude of reasons why we should not study mental

models, yet argue that because of their slippery, elusive behavior, we should con-

tinue to strive to find best practices for eliciting, describing, and analyzing mental

models [81]. We continue the conversation by asking these questions to further

understand how understanding mental models can help with visualization design:

How do we avoid choosing a non-fruitful data abstraction during visualization de-

sign? How many abstractions should we include if multiple abstractions provide

insight into the data [13]? There is an inclination toward selecting a single “good”

abstraction, but by doing so, how much do we compress the space of reasonable

abstractions? Is there a breadth in how people think about these data abstractions

in their existing mental model of a dataset? How big is this breadth? We do not

attempt to answer all of these questions but provide this paper as a starting point

for the community to investigate mental models at the start of the design study

process, before the existence of a visualization, to strategically explore suitable data
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abstractions.

Specifically, we begin by asking the following research questions:

• What factors influence people’s initial mental models of data?

• What encodings and visualizations do people commonly use to communicate

their mental model?

• How do people describe how they think about the data? How do people

describe their sketches?

• How difficult is it for people to sketch and/or describe their mental model?

How difficult is it for us to understand?

With the answers to these questions, we can have a better understanding of how

users attempt to convey their mental models of datasets, which allows us to incorpo-

rate aspects of their mental model in our choice of data abstraction and visualization

design. While no one use case is a perfect representative of a “typical” design study,

we conduct this experiment using small, incomplete datasets in paragraph form to

represent design studies where the data are evolving and both the designer’s and

the user’s mental models of the data are shifting throughout the design process.

Further research is needed into techniques for improving the elicitation process in

a visualization design context, but our study shows how semi-structured interviews

and eliciting representations in the form of sketches can be effective means of clar-

ifying how a person thinks about a dataset. These results have implications for

how designers approach the initial stages of the design study methodology, and how

effectively and efficiently they can execute the design study.

Recognizing the open-ended nature of these research questions, we conducted a

study into the mental models and data abstractions people create from a dataset.

Rather than presenting participants with tabular data, which has been shown to

influence design choices [10], we presented participants with one of three datasets in

paragraph form. We observed a wide variety of mental models, data abstractions,

and depictions from the same dataset, as well as how these concepts are influenced
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by communication and purpose-seeking. We present our collection of core concepts

and their implications for visualization design.

In summary, our contributions are:

1. A set of themes, supported by codes, that describe the diversity of initial

mental models and data abstractions, their depictions and influences leading

to them, and how they are communicated (section 5.4),

2. Implications of these themes and codes for visualization and data design (sub-

section 5.5.3), and

3. An open database of the sketches and transcripts resulting from the study. 3

We discuss background in mental models, data abstractions, and sketching (sec-

tion 5.2). Next, we detail our study methodology, the motivations behind our three

synthetic datasets, and our analysis process (section 5.3). We explain how our

interviews and sketches support our codes, which in turn motivate our themes (sec-

tion 5.4). We discuss our research questions (subsection 5.5.1), and the limitations

of our study (subsection 5.5.2), and we provide implications for the visualization

community (subsection 5.5.3).

5.2 Background and Related Work

We discuss related work in mental models, data abstractions, and sketching in vi-

sualization.

5.2.1 Mental Models

We draw on the abundance of research on mental models in areas like cognitive

psychology [69], design [62], and HCI (e.g., [55, 137]), as well as their applications

in visualization (e.g., [92, 14]), natural resource management [71], computer sci-

ence education [52, 128], and engineering [58]. A mental model is an individual’s

3https://osf.io/kvnb9/

https://osf.io/kvnb9/
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understanding of a subject or concept that consists of their prior knowledge, un-

derstanding of the presented material, and integration of the knowledge with their

worldview. Mental models are more abstract than perceptual images. They contain

less detail because our brains omit details we deem irrelevant, yet contain more

information than a visual image because they include our prior knowledge [129].

Research on mental models often examines how well people learn “something in

the world,” frequently an interactive or dynamic system [81]. Klein and Hoffman

explain that the mental model is shaped by the rules, laws, and principles that govern

this “something” as we observe and learn how this something exists in the world [81].

Jonassen and Henning state mental models are “representations of objects or events

in systems and the structural relationships between those objects and events?” [70].

We compare our findings to those of other mental models in subsection 5.4.7.

Studying mental models is challenging because there is limited accuracy, they

are unique to each individual, they are incomplete representations of reality, they

are inconsistent and context-dependent, and are highly dynamic models [71]. Klein

and Hoffman outline these issues with mental models, and why researching mental

models can be controversial but worthwhile [81]. They argue that it is imperative to

understand how mental models are formed and how mental models may be modified

to increase the depth of understanding, with applications in education and group

discussions.

Given mental models are internal phenomena, any method to elicit a mental

model can only give us a representation of the mental model. Sketching, interviews,

and arranging topic cards are common due to their flexibility. Harper and Dorton

created a more specific elicitation method for mental models that uses a detailed

notational framework to visualize the mental models [55]. A more indirect approach

is observation, such as listening to participants think aloud about their strategy in

the word-guessing game Passcode, as they work with an AI to understand how the

AI gives and receives clues about the word [49]. Regardless of the method, these

knowledge-elicitation methods have been repeatedly tested by cognitive scientists

and the strengths and weaknesses of using the methods on mental models have been
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discussed at length [30, 31, 71].

A popular strategy for studying mental models is to use direct elicitation. Direct

elicitation requires the interviewees to represent their understanding of a given topic

externally, e.g., by drawing a diagram of their mental model or by arranging a set of

cards of existing concepts [71]. Interviews are also viable ways to elicit mental mod-

els. Milgram and Jodelet asked Parisians to draw a map of Paris and speak about

all of the elements of the city that came to mind. From the activity and follow-up

interview, they found that participants’ sketches of “their” city were a combination

of major city landmarks and personal touches, such as a butcher including the meat

stockyards or an architect adding an avenue to connect prominent structures [99].

Like with all representations, these representations of mental models are influenced

by the skill of the interviewer and the ability of the interviewee to verbalize their

understanding.

5.2.2 Mental Models and Data Visualization

In a collaborative group setting, people share ideas and socially negotiate a com-

munity mental model that draws on collective experiences, knowledge, and wisdom

from the individuals in the group [70]. This setting occurs in the use of data visual-

izations, such as when stakeholders are analyzing a visualization. This collaboration

also occurs in the early stages of the design methodology, when domain experts and

designers are negotiating the data and tasks they wish to support. Liu and Stasko

argue for the inclusion of mental model research in visualization, saying that visu-

alization can be viewed as a tool to support the formation of mental models about

data and information [91]. They developed a visualization-centric definition of a

mental model, stating a mental model is a “functional analog representation to an

external interactive visualization system” and listing characteristics of that internal

representation. They use this definition to explain how internal representations af-

fect how people interact with external representations and vice versa. To put this

theory into practice, Mayr et al. present measures and evaluation procedures to as-

sess mental models in other domains and discuss their applicability to information
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visualization [92].

Visualizations are effective ways of modifying mental models to improve under-

standing. The addition of an effective visualization when learning new concepts can

be critical to developing a viable mental model of a new subject or system, such as

computer architecture [160].

5.2.3 Data Abstractions

A data abstraction is a mapping of domain-specific data to an abstract data type

[104], e.g., power station supply lines can be mapped to a network, providing a

more generalizable form to the data. Abstraction should happen early in the design

process, during the discovery stage, and should be frequently re-examined by the

domain experts to ensure correctness and cohesion with their mental model of the

problem [133]. The mental model of the user might not neatly correspond to one

particular data abstraction, but the discussion around the data abstraction can

serve as a way for the user to make their abstract mental model more concrete to

help the visualization designer. The visualization designer may need to change the

abstraction based on their understanding of how the user interacts with the data

and the tasks they are trying to accomplish. Exploring alternative abstractions

and their usefulness is much simpler at the beginning of the design process before

significant time and resources have been invested. Often there is not a single correct

abstraction; instead, abstractions must be designed [98, 102] to best suit the user’s

needs.

Many authors have identified that difficulties exist in communicating effectively

about data abstractions [119, 133, 149]. Trees and graphs can be especially haz-

ardous abstractions to work with, in terms of their potential for miscommunication

[108], especially when dealing with edge cases or when people use mathematically

imprecise language to discuss graphs [45]. Bigelow et al. found that introducing

a data abstraction typology, a model that describes the space of possible data ab-

stractions and/or data wrangling operations, can spark discussion and elicit more

specific communication about the dataset and abstraction, even when the typology
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is imperfect [13]. Similar to Bigelow et al. [13], we conduct a study of data abstrac-

tions; however, we seek to answer a different set of questions. Bigelow et al. focused

on the utility of considering a change in the dataset type of an existing data ab-

straction. We seek to understand how multi-abstraction datasets can be interpreted

and represented.

Tension naturally arises when trying to work with data: tension between the

internal data abstraction and the external data abstraction, tension between the

imagined visualization and the constraints of the system [13], and tension between

the provided data and the desired data. Tension between users and visualization

designers may also arise. Even visualization designers and developers may have

difficulty communicating about data mappings, anticipating changes to the data,

and elucidating technical challenges [149].

5.2.4 Sketching

Sketching is used in different ways in visualization, often for prototype demonstra-

tions by designers, but also in understanding how people create visualizations for

their own personal use. Data sketching is a simple way to show personal mental

models, such as students’ concepts of time [44] or homeowners’ concepts of their

home wireless network [118]. Understanding the language of diagrams and how we

visualize our thoughts [143] enables us to successfully collaborate and share visual-

izations. Communication and gestures help augment what is on the page [26].

Walny et al. used data sketching to examine external representations people

created from a novel dataset [151]. They examined the diversity of data representa-

tions and the relationship between sketches and people’s understanding of that data.

Participants were given a table of ratings of human behaviors in social settings as a

dataset.

While our study shares similarities with Walny et al. [151], there are significant

distinctions between the two. For methodology, we presented our dataset in para-

graph form, rather than in a table, to minimize influencing the data abstraction with

a prior data abstraction. Text is not a typical format of the data, but the paragraphs
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were rather list-like (see subsection 5.5.2). Our study had a pre- and post-sketching

discussion, rather than writing a free-response answer to a question. For research

questions, Walny et al. examined the range of visualizations that were created, plac-

ing the participants’ sketches on a numeracy to abstractness continuum. We use

this numeracy to abstractness continuum to code our results, see subsection 5.4.6.

However, rather than the encodings and contents of the sketches themselves, we are

more interested in what sketched representations can reveal about the data abstrac-

tions that participants assume or construct in their minds. As we were interested

in mental models and views about data, our semi-structured interviews allowed us

to delve into these discussions.

5.3 Study Methodology

To elicit data related to data abstractions, we conducted interview sessions where

participants were asked to sketch a small dataset and then discuss their sketch and

mental model through a semi-structured interview. We used three datasets designed

for the potential to elicit different data abstractions, with each participant being

shown one. We piloted the study with five participants, after which we iterated on

the designed datasets and the interview questions.

Three authors participated in coding interview transcripts and sketch pho-

tographs and met regularly to develop codes further. We continued collecting data

until we reached saturation regarding our research questions. We describe the details

of this study below. An overview of our procedure is shown in Figure 5.2.

5.3.1 Participants

We recruited 28 participants, listed in Table 5.1 by occupation and dataset prompt.

We sent out recruitment requests to five organizations, of which we recruited par-

ticipants from a university’s computer science (CS) Discord server and undergrad

CS mailing list as well as posting fliers and word-of-mouth in the local YMCA com-

munity. Of the participants, 20 had computer science-related work (16 were CS
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Figure 5.2: Overview of the interview procedure.

or Information Science students, 4 were computing professionals—3 developers, 1

project manager in an IT department) and 8 had other occupations. Participants

ranged in age from 18 to 77 years old, with the mean age being 30.7 years old.

We did not conduct a visualization literacy test but asked participants how

frequently they visualized data. Most (21) participants reported “sometimes” and

seven reported “always.” However, in subsequent discussions, we discovered a wide

interpretation of “visualizing data” from imagining data to varied frequencies of

plotting. We further discuss these results in the analysis.

5.3.2 Setup and Materials

All sessions were conducted through video-conferencing software. Participants were

instructed to bring a pen or pencil and a sheet of printer paper to the virtual



111

Table 5.1: Participants

Participant Occupation Dataset

006 Student (CS + Math minor) File System
007 Student (CS + Management and Info. Systems minor) Junk Drawer
008 Student (CS + Math minor) Power Station
009 Student (CS), Software Developer File System
010 Student (CS) Junk Drawer
011 Student (CS) Power Station
012 Student (CS, Biochemistry), CS Teaching Assistant File System
013 Student (CS, Information Science) Junk Drawer
014 Student (CS, Information Science) Power Station
015 Student (CS) File System
016 Sales Junk Drawer
017 Substance Abuse Counselor, Swim Instructor Power Station
018 Web Developer File System
019 Editor (Retired) Junk Drawer
020 Software Engineer Power Station
021 Project Manager (IT) File System
022 Student (CS) Junk Drawer
023 Nurse Power Station
024 Student (CS), Research Assistant Power Station
025 Student (CS), Research Assistant Junk Drawer
026 Research Analyst Power Station
027 Student (CS), Research Assistant File System
028 Student (CS) Junk Drawer
029 Student (Chemical Engineering, Information Science) Power Station
030 Data Scientist, Programmer File System
031 Army Wife Junk Drawer
032 Student (Medicine) Power Station
033 Financial Consultant File System

meeting, although seven participants used lined paper and three participants used

some form of electronic drawing software (e.g., tablet). Each participant was asked

to angle their camera toward the paper as they sketched. At the end of the session,

participants were told to take a digital (phone) photograph of their sketch and

submit it. Sessions typically lasted around 20 minutes, lasting no longer than 30

minutes.
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5.3.3 Datasets

We created three (3) datasets which we refer to as File System, Junk Drawer,

and Power Station. These names were not shared with the participants. Our

goal was to design datasets that afforded multiple data abstractions, based on prior

research exploring the facility of changing the data type of an existing data abstrac-

tion [13].

We created relatively elementary and sparse datasets with the intention of (1)

being accessible to people with a broad range of backgrounds, (2) allowing wide

interpretations if they existed, and (3) limiting the need for revising the drawing

and thus increasing the likelihood we were observing the initial mental model. We

recognize that many datasets are often provided to visualization designers and col-

laborators “as-is”. However, we see the value in discovering, capturing, curating,

designing, and creating [102] the data and wanted to understand if and how our

participants explore data abstractions, in this case, for example, the dataset itself

is under construction and thus in flux.

We prioritized keeping the datasets short and understandable, though not nec-

essarily comprehensive. All three datasets were presented in paragraph form rather

than as a table so as not to influence the mental models toward tables [10].

We chose not to include tasks with our datasets. In visualization design, tasks

are often unclear from the beginning, so in addition to using paragraph form, we

provided no additional purpose or tasks to the participants so as not to further

influence toward a particular data abstraction.

We discuss the limitations of our choices in the use of paragraphs and the omis-

sion of tasks in subsection 5.5.2.

File system

You have two folders. In the first folder are 2 text files and 3 images. In the second

folder are 4 text files, 2 code files, and 1 folder. In this folder are 1 text file and 1

image.
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The file system dataset was inspired by discussions of file system formats [45]

and research regarding difficulties first-year computer science students have with

navigating file systems [29]. We collected the age of the participant to see whether

we would also notice this phenomenon. We made this a hierarchical set of files to

see how participants handled the nested folder. The resulting sketches are shown in

Figure 5.3.

006

009

012

015

018

021

030

027

033

BParticipant ID Second Sketch Computing Participant

B

B

B

B

Non-Computing Participant

Figure 5.3: Sketches that participants made of the File System dataset. Large
versions are in the supplemental archive.

Junk drawer

You have 6 rubber bands, 4 tacks, 3 unused envelopes, a roll of stamps, 4 pens, 3

pencils, 2 sharpies, a small basket, a pencil pouch, and a long plastic basket.

We designed this dataset to be lacking an obvious (non-list) structure, but with

several options for imposing one. We included a possible “container” for different
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groups of items, e.g., the pencils could go in the pencil pouch. We were curious to

see if the participants extracted sets or groups from the dataset and how these sets

might differ. The resulting sketches are shown in Figure 5.4.

007

010

013

016

019

022

025

028

031

Participant ID Computing Participant Non-Computing ParticipantB Second Sketch

B

Figure 5.4: Sketches that participants made of the Junk Drawer dataset. Larger
versions are in the supplemental archive.

Power station

There are 6 power stations, labeled A through F. Power station A powers 100 homes.

Power station B powers 150 homes. Power station C powers 1 warehouse and 100

homes. Power station D powers 4 apartments, each housing 100 residents. Power

station E powers 50 homes and 2 apartments, each housing 100 residents. Power

station F powers 50 homes.

For the power station dataset, we wanted a variety of classes of data items to

allow for different mark types or icons. We also were curious if participants would

tie in geographic attributes to the dataset or if we would see any networks, allowing

for different visualizations from the previous two datasets. The resulting sketches

are shown in Figure 5.5.
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Participant ID Computing Participant Non-Computing ParticipantB Second Sketch

008

011

014 023 032

020

017

029

026

024

B

B

B

Figure 5.5: Sketches that participants made of the Power Station dataset. Larger
versions are in the supplemental archive.

5.3.4 Procedure

We first briefed participants and obtained the study and recording consent. Each

participant was then given an overview of the sketching activity verbally and the text

of one dataset through the videoconferencing application’s chat feature. Our name

for the dataset was not included. See Figure 5.2 for the overview script. Participants

independently read and considered the dataset, then informed the facilitator once

they were through. The approximate time most participants took to read and

consider the dataset was under 30 seconds. After this, the facilitator asked, “What
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was your gut reaction or intuition about the dataset?”

After the ensuing discussion, the participant was asked to angle their camera and

sketch the dataset. Participants were allowed to draw until they felt satisfied with

their drawing, with most participants completing their sketches in under 4 minutes. 4

We then conducted a semi-structured interview with the following pre-set questions:

1. Explain the drawing as if I (the researcher) haven’t seen it before.

2. What sticks out to you in this dataset?

3. How did you come up with this idea? Have you seen something like this before

or have you worked with a dataset like this before?

4. Did your mental model of the data change throughout the drawing process?

If so, how?

The first question (explanation of the drawing) is designed to help disambiguate

the sketched representation as the authors might interpret it from the participant’s

view of the sketch. The intent is to separate the sketched visual form from the

data abstraction that matches the participant’s mental model, providing a way for

participants to clarify their representation of their mental model when inhibited

by their sketching capabilities. The combination of drawing and interviews is a

technique used in mental model research [71].

The second and third questions probe possible influences. The fourth question

is designed to provide insight into the possible evolution of mental models, both

during initial formation and possibly due to the study design.

In these discussions, some participants augmented their responses by making a

second sketch, sometimes prompted by the interviewer to better understand their

words. These bonus sketches occurred in eight of the 28 sessions, bringing the total

sketch count to 36 sketches.

4Participant 013 continued to draw and add detail to their sketch for 11 minutes, at which point

the facilitator asked them to stop so that they had time for the discussion questions.
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We concluded with demographic questions and a short debriefing. The procedure

was designed to take no longer than 30 minutes. Due to a logging error, exact times

are missing for five participants, though all finished within their 30-minute slot. The

remaining participants finished within 15-25 minutes with a median finish time of

20 minutes. Participants were compensated with their choice of plush toys, a $10

gift card, or a $10 donation.

5.3.5 Thematic Analysis

We took an inductive thematic analysis approach. During data collection, three au-

thors individually noted codes and thoughts regarding the transcripts and sketches,

initially following an unconstrained open coding [101] practice. These codes were

recorded as memos on a shared GitHub repository5 to facilitate remote collabora-

tion and to track the provenance of codes.

Though we could have chosen a deductive coding approach for the data abstrac-

tion using an existing typology, we deliberately chose to exclusively use inductive

coding to not limit, bias, or constrain the data abstractions discovered or our inter-

pretation of the ways the participants spoke about their mental models.

The authors met regularly to discuss the codes, limiting the discussions to the

sessions where all authors had had a chance to code. Typically 3-5 sessions occurred

between each meeting to discuss initial codes. In total, we coded 28 transcripts and

36 sketches.

As these discussions took place, we moved to axial coding to develop hierarchical

concepts. The authors used Google Jamboard to cluster, merge, and split their

initial codes and to identify concepts arising from multiple codes. We arrived at

24 consensus codes. The identified concept groupings were then discussed, distilled,

and refined into the shared document in the GitHub repository. This permitted

asynchronous discussions regarding concepts as they progressed.

The discussions and refinement of concepts led to the discovery of common ob-

servations that reinforced codes and also helped us refine our data collection. For

5https://github.com/kawilliams/mental-models-codes/blob/main/codes.md

https://github.com/kawilliams/mental-models-codes/blob/main/codes.md
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example, after observing that participants tended to draw items in the order of

reading, we wondered if the alphabetical order of the power station dataset might

be influencing this phenomenon. Thus, in sessions 026 and 029, we presented the

power stations in non-alphabetical order; however, the participants continued to fill

in the data in the order of reading.

The authors initially developed a set of themes from research questions and hi-

erarchical groupings of codes. After external feedback, two authors reconsidered the

codes and initial themes, determining the themes had become too broad. Codes and

concepts were then reorganized into six themes (described below in section 5.4) elab-

orating on the research questions and one secondary theme regarding perceptions of

data.

5.4 Themes and Codes

We arrive at three clusters of themes relating to mental models of data: mental

model content, mental model elicitation, and mental model formation as well as a

secondary theme regarding beliefs about data. Below, we explore the themes in

each cluster in the context of our study and explain select codes that made up

these themes. For detailed supporting evidence for each theme and code, see the

supplemental archive.

After presenting our main and secondary themes, we follow up with a discus-

sion of themes regarding our computing and non-computing populations (subsec-

tion 5.4.5) and our mental model characterization in discussion with the model of

Walny et al. [151] (subsection 5.4.6).

5.4.1 Themes about Mental Model Content

During our thematic analysis, we developed two themes regarding mental model

content. The codes comprising these themes have to do with the breadth and

composition of mental models. While this cluster contains our best effort in un-

derstanding the form of the participants’ mental models, it does not contain codes
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relating to how participants depicted or otherwise communicated that mental model.

We discuss those latter codes in the cluster Themes about Mental Model Elicita-

tion (see subsection 5.4.2). The list of codes relating to mental model content

can be found in Table 5.2 with the code label listed as “(C#)”; the complete list

of corresponding codes and their definitions and supporting data can be found at

https://osf.io/kvnb9/ and in the supplemental material.

Theme Code Representative example/Evidence

Diversity of mental models

Diversity of abstractions and
representations (C1)

For the power station data, we saw
tables (4), set/geospatial (1), bar
charts (2), node-link networks (2),
set (1), table and node-link (1), and
a multi-figure “journal paper”-like
representation (1) that included
captions and text.

Ordering diverse, personal (C2)
* Caveat: participants drew in order
of reading (C3)

Participant 016 (JD) organized by
desired category of “durability”
based on personal experience.

Diversity of groupings (C4)

Grouped by functionality (2),
participant-selected category (2),
grouped only the writing
implements (2), list order (i.e.,
no grouping) (4).

Components of
mental models

Physical objects represent data (C5)

Participant 008 (PS): “I’ve seen a
lot of power plants back home...
that’s why I drew the cooling towers.”
Participant 013 (JD): “There’s a red
pencil case that I had during my last
year of high school and these are the
pens that I have right now in college.”

Tree/Network/Set ambiguity (C6)

Participant 018 (FS) used terms “set”
but also “level” and “nesting.” Drew a
node-link initially but said they
considered a nested drawing (shown
in bonus for 018).

Mental models include affordances (C7)

Participant 022 (JD) drew a basket
with a handle “so it’s organized in a
way and you can carry it around.”
5/9 participants who had the FS
dataset spoke about interactions.

Table 5.2: Themes about Mental Model Content. This table contains our themes
and codes about mental model content and some representative examples for each
code. The codes are labeled as “C#”. The complete list of codes and all sup-
porting evidence can be found at https://osf.io/kvnb9/ and in the supplemental
material.

https://osf.io/kvnb9/
https://osf.io/kvnb9/
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Theme: Diversity of mental models

Across each of the three datasets, the participants chose different abstractions and

representations. We classified both the data abstraction (e.g., hierarchy) and the

representation used (e.g., node-link) for all sketches. While it is hard to disassociate

the typology from the representation in some cases, we took a best-effort approach

based on both the sketch and the way the participant spoke about the sketch and

their mental model. This led us to classify some mental models as multiple concepts.

Figure 5.6 shows our mental model classifications for all three datasets.

Figure 5.6: Our best-effort classification of mental models expressed by participants.
Open circles indicate the second sketch made. Participants expressed a variety of
mental models, many of which were ambiguous between multiple categories. Some
mental models aligned well with data typologies, while others, like “Journal Paper”,
did not.

Within the same dataset, we further observed diverse groupings and orderings

of the data that had personal meaning to the participant. Participants grouped the

data by type, logical association, size, function, and even by the attribute “price”

that the participant added based on personal experience. For the file system dataset,

participants expressed a desire to reorganize the folders to homogenize file types.

The junk drawer dataset was often organized by functionality, by logical associa-

tions (e.g., writing implements in the pencil pouch), or by a participant-selected

category (e.g., Participant 016 organized by the “durability” of the items, recogniz-

ing disposable items might be less valuable). Participants frequently explained their

reasoning for grouping the data, with less explanation for the logical and functional
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groupings in the junk drawer dataset and more explanation for the desire to modify

the file system dataset structure, often hypothesizing about reasons for the existing

file structure. No two participants grouped their junk drawer items in the same way,

except for the no-grouping list order.

Participant 008 started by 
representing power plants 

with cooling towers (C5, 
physical objects).

They later switched to just 
squares when they “got lazy” 

(E1, using abstractions)

Figure 5.7: The sketch by Participant 008, with annotations explaining how this
sketch exemplifies our codes about physical objects and about using abstractions
(C5 and E1, respectively).

One caveat to the ordering: despite the different orderings we observed, most

participants still drew the data in the order of reading. We observed 22 participants

draw their dataset in the order in which they read the dataset, and 4 participants

draw the dataset in a way that did not reflect the order presented in the dataset (2

participants were not able to easily display their sketch to the camera while drawing,

so we did not consider their sessions for this code). All participants who had the file

system dataset drew it in read-order. Most participants who had the junk drawer

drew in read-order (7/9 participants), and most participants with the power station



122

dataset drew in read-order (9/11 participants). Those 4 drawings that were not in

read-order were drawn in order of some internal mental grouping or categorization:

the 2 participants who had the junk drawer dataset discussed logically grouping

the items, the 2 participants with the power station dataset drew representations

for the categories of power (home, apartments, warehouse) rather than sketching a

representation of the first power station and its recipients.

Theme: Components of mental models

We developed three codes regarding the components of mental models, in particular,

regarding the presence of physical objects, ambiguity in mental models involving

relations such as trees and sets, and the presence of affordances.

Physical objects were prevalent in the mental models we observed. The draw-

ings of the objects mirrored their appearance, affordances, and orientations in the

real world. This theme cross-references codes under Mental Model Content and

Mental Model Elicitation, but as these physical objects were what the participant

thought of as their mental model, we placed this code under Mental Model Content.

The appearances of the objects were tied to memories: the cooling towers drawn by

Participant 008 were based on power stations the participant had seen in their home-

town and engineering textbooks, while nearly all of the junk drawer items drawn by

Participant 013 had a story or memory tied to them. We note the strong semantic

connection between our datasets and concrete objects may have influenced these

observations and discuss this further in our Limitations section (subsection 5.5.2).

We found difficulty disambiguating and naming mental models that involved

relationships between data items. For example, mental models similar to data ab-

stractions typically classified as trees, hierarchies, and sets. We carefully considered

language cues—terms such as “levels,” “branches,” “associations,” “nesting,” “un-

derneath,” “inside,” “hierarchy,” and “graph.” There were no clear boundaries in

how representations were used, and sometimes the terms vocalized were associated

with multiple different data abstractions. For example, Participant 018 used the

term “set” and the term “level” in describing their node-link sketch.
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Lines indicate mental affordance (C7)
Participant 033: “I have the little like two 
lines shooting out from it to indicate that 

it’s a blow out.”

Figure 5.8: The sketch by Participant 033 of the file system dataset. The participant
drew lines to indicate interaction in their mental model (code C7).

Some participants described interactions, or mental affordances [102], within

their mental model. Six participants who had the file system dataset explained how

they would interact with it, specifically how they would navigate it (Participants

006 and 030), or even actually drawing an inset to show this interaction (Participant

033). Even though we were discussing an abstract concept (i.e., their mental model)

in a static medium (i.e.,paper), participants referred to interactions with their visu-

alization and mental affordances, or internal interactions, that they used with their

mental model.

5.4.2 Themes about Mental Model Elicitation

We developed two themes regarding mental model elicitation, encompassing how

the mental models were drawn on paper and how they were verbally described by

participants. These codes solely relate to the choice of representation and encodings

on the paper and what verbiage the participant used to describe their drawing.

The list of codes relating to mental model elicitation can be found in Table 5.3

with the code label listed as “(E#)”; the complete list of corresponding codes, their

definitions, and backing data can be found at https://osf.io/kvnb9/ and in the

supplemental material.

https://osf.io/kvnb9/
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Theme: Depictions of mental models

We formed several codes regarding how participants depicted their mental models,

such as their use of text, legends, details, and abstractions, as well as where they

were constrained by the sketch format.

We only noted the use of text when the participant commented on their use

of text. Participants specified that they would use words to communicate with

another person (Participant 019, 027), with Participant 027 noting, “When I use

icons, unless it’s mutually understood by both people, it might confuse; or even

I might forget what the notation actually stood for... You can’t go wrong with

text, and it’s [the file extension] not long either.” To help their understanding of

the file system dataset, Participant 021 decided to put “2 code [files]” since they

did not know what code meant. Other participants chose a code type for clarity—

Participant 009 used “.java” so that “we can be more explicit” and Participant 030

used “common file extensions” but recognized they used a mix of “tokens” for the

file types.

Similarly, the use of detail was only noted if the participant commented on

adding detail. Some participants wished to add detail to distinguish between the

junk drawer items (Participants 019, 031). Other participants wanted to add arrows

and labels: Participant 012 added labels and arrows to suggest hypotheses about the

relationships between the files, Participant 020 wanted to add weights to directed

arrows for the power stations and said that the addition “would be an improvement.”

Only one participant drew a legend on their sketch (Participant 032). Other

participants verbally described what the icons meant, like explaining the icons for

the types of files (Participant 006) or explaining that the small squares represent

homes (Participant 024).

Some participants either vocalized their use of an abstract mark or switched to a

more simple mark during sketching. Participant 011 drew boxes because “drawing

houses would be too difficult;” Participant 014 sketched the idea of a table rather

than the full one; Participant 024 said their mental model was geographical but chose
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to draw without geographical marks. Participant 008 started drawing buildings in

3D, but then switched to 2D icons. To show their reaction to the file system data,

Participant 012 said “I marked it with a bunch of question marks to the right because

I don’t have any idea what [this folder] was for; it’s just there.”

Other participants left out details altogether. Participant 009 originally labeled

the text files with “txt” but stopped labeling them because “I’m gonna be lazy.” In

their bonus drawing, Participant 030 added an ellipsis for the “OBJECT TYPE”

attribute after writing one complete data table entry since the rows beneath were

all the same type. Participant 023 used a squiggly line instead of a rectangle for the

bar graph; the lack of detail is possibly related to their level of math literacy (code

F7).

Some participants ran out of space while drawing and verbally noted it. To

adapt, some added their marks to a different location (Participant 007 drew the

sharpies outside of the pencil pouch, and Participant 016 skipped back to the left

side of their x-axis since they ran out of space going left to right). Others continued

with the existing drawing and expressed regret (Participant 015 said “it’s hard to

draw this. I should’ve brought a pencil.” Participant 022 wished they “made the

basket a little bigger.”).

Some participants were constrained by the encoding schema they chose, rather

than space. This happened to Participants 030 and 033 when they encountered the

code files in the file system dataset since they did not anticipate the file type and

had not prepared a way to encode it.

Theme: Communication with others

We observed participants making conscious choices about how they represented the

data when communicating with others (code E66), but varied in their level of detail

and abstraction, and use of terms.

Some participants sketched at a high-level abstraction but added detail, like

6The complete list of codes can be found at https://osf.io/kvnb9/ and in the supplementary

material.

https://osf.io/kvnb9/
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colors (Participant 009) or item detail (Participant 031), to clarify for others. One

participant re-oriented their tree from top-down to left-right and attempted to add

interaction indications (Participant 021). Participant 031 recognized which aspects

of their drawings could be confusing and said, “Between the pens and the pencils and

the Sharpies, you can’t really tell what they are. If I were to give it to somebody,

they probably wouldn’t be able to tell—to differentiate between those groups...I

probably should have written ‘envelopes’ on them or some type of—you know, if

somebody were to look at this, I don’t think they would know what I drew.”

Two participants said they would choose a different data abstraction, depending

on the audience’s “quantitative literacy” (Participant 026), or they would find a

“better way” to represent the data, possibly by adding a table or other figures and

captions (Participant 032).

When communicating with the facilitator, participants added annotations when

discussing their sketches. Participant 006 added encompassing circles around the

top-level folder of their file tree and the children under folder 1. To explain how

they would solve for the total power generated, Participant 014 added a graph with

root node ‘A’ at the bottom of the page.

Sometimes participants used terminology in conflict with visualization com-

munity concepts for dataset abstractions. One participant drew a table, even

though their description and interaction with the dataset focused more on data

item relations (Participant 014), reinforcing the code about ambiguity when using

trees/networks/sets from Table 5.2. In particular, they used the terms “endpoint”,

“layers”, and “map” and relied on their other drawing of a node-link graph to aug-

ment their description of how they would solve for the amount of power produced.

When referring only to the data (no longer problem-solving), they said what stuck

out to them was the “layers” and “sublayers” in the dataset.

One participant used set-like terminology to describe their node-link diagrams.

Participant 006 described, “In my head, I’m oddly enough in the folder that those

two folders are within,” and often used “within” and “in” to describe the location.

In response to the interview prompt “Describe your sketch”, we observed a range
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This image is a bar chart, but the participant spoke of their mental model as a journal paper. (C1, F6)
Participant 032: “…in my head, I’m like “I’m going to have captions and figures and paragraphs in 

addition to this and an opportunity to explain myself too, not just this bar graph.”

Is this a tree, set, or hierarchy? The participant 
used a mix of representation and terminology 

appropriate for all three. (C6, E7)
Participant 018:              “I have two outer sets…”,

“It’s at a different level…”,
“…the nesting matters…”,

“…you’re very used to that nested hierarchy…”

Figure 5.9: The sketches by Participants 018 and 032. Annotations explain how the
verbal description from Participant 032 expanded their representation from solely
the bar chart that they sketched to an elaborate multi-figure “journal paper” (C1,
F6). The annotation to Participant 018’s sketch includes quotes that highlight the
mix of terminology that the participant used (codes C6, E7).

in the level of descriptive detail. We categorized the levels of detail in the verbal

descriptions : (1) individual data points, (2) individual icons, (3) relations of icons

or positions of icons, and (4) data abstraction. By “individual data points,” we

mean the participant nearly restated the dataset and did not describe the drawing.

Five participants stuck to this individual data point level of detail (Participants 008,

014, 018, 027, 032).

The next level of detail, “individual icons,” means the participant gave visual

descriptions of the icons or marks used in the dataset. These verbal descriptions

ranged in detail, with six participants matching this level (Participants 010, 011,

013, 019, 030, 031). Some participants named every type of mark, while others got

distracted midway.

The third level of detail, “relations of icons or positions of icons,” means the

participant stated where the icon was on the page or in relation to other icons

(e.g., “in a folder,” “next to the files,” “roll of stamps down there and tacks to

the right”). Nine participants referred to relation/positioning when describing their

sketch (Participants 006, 007, 012, 015, 021, 022, 024, 025, 033).
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Eight participants named a data abstraction (Participants 009, 016, 017, 020,

023, 026, 028, 029). However, their name did not always match the visualization

community’s name for data abstraction or data representation that they used. After

naming the data abstraction or representation, they went on to describe the icons

or markings they used, the second level of detail.

5.4.3 Themes about Mental Model Formation

We describe two themes describing our observations regarding how participants came

to their mental model, based on their descriptions. These codes do not attempt to

explain how the mental models are formed; instead, they are observations of how

a mental model develops in a data- and visualization-related setting. The list of

codes relating to mental model formation can be found in Table 5.4 with the code

label listed as “(F#)”; the complete list of corresponding codes, definitions, and

supporting data can be found at https://osf.io/kvnb9/ and in the supplemental

material.

Mental model formation process

Participants suggested their mental models form quickly, with little change, though

we observed they became more detailed during the session. Our first interview ques-

tion asked about initial impressions and reactions. Participants’ responses already

expressed ideas for data abstractions and what they would draw, including thoughts

about ordering and purpose-seeking. Participant 024 said, “My gut reaction was

like an image of—I dunno if you know cell-free MIMO graphs...” and described how

they would use the idea to draw the power stations. Other participants immediately

tried to find the purpose or context of the dataset, such as supposing that the junk

drawer dataset “it’s like a handy toolbox for a home” (Participant 013). Partici-

pants also expressed a desire to organize the data by categorizing or by finding a

more “efficient” way.

We later asked participants if their mental models had changed. About 60%

https://osf.io/kvnb9/


129

(17/28) of participants said it did not. Several participants mentioned aspects of

their mental model that were obvious, such as “it’s obviously a folder structure”

(Participant 009) or “I feel like in my head it’s the simplest conclusion” (Participant

032). For the participants whose mental models had significantly changed, they often

cited trying to find a “better” or “best” way to display the data (Participants 010,

016, 023, and 032).

We observed some participants vocalizing their revisions, adding details to their

sketches and mental models as they drew, or adding clarifying information afterward

when describing how their mental model changed throughout the interview. Partic-

ipants 030 and 033 chose icons to represent different file types during the drawing.

Participant 030 explained when asked about mental model changes that this was

a “minor hiccup... trying to choose tokens to represent the category of files: text,

image, code.” While explaining their sketch, Participant 006 added a root to their

file system.

Influences on the mental model formation

When asked where their idea for their mental model originated, many participants

explained where they had seen something similar or hypothesized the source of

their inspiration. All but one participant who drew the file system dataset cited an

operating system or software for either the structure or icons, including Participant

015 who drew the nested manila folders similar to a Windows icon. Despite the

common inspiration, there were several different types of depictions. Across all

datasets, participants cited a real-life example (e.g., a drawer in their home, power

plants, cell-free MIMO) or their work as the reason for the choice of data abstraction.

Participants with less math literacy had a limited representation and mental

model. Two participants expressed math hesitancy, 023, “Yeah, that’s a lot of math.

I’m not - I’ve only taken high school math”, and 031 “I am not very good in math.”

Both were part of our non-computing population of participants. Participant 023

had difficulty finding a concise way to express the power station dataset. Their

sketch was missing a data dimension (the power stations A-F). Participant 031 had
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the junk drawer data and drew the physical objects as given. While the evidence

for this code is lighter as we suspect our IRB-approved advertisements may have

dissuaded people not comfortable with data (see Limitations, subsection 5.5.2), we

noted this code for future investigation.

Since we only provided a dataset to the participants, participants often wanted to

add additional data or information to the dataset or they added additional context

or a hypothetical source for the dataset. We classify such behavior as purpose-

seeking behavior, or an attempt to connect with the dataset in an imagined real-life

setting. Six participants suggested other data item attributes they would want, and

four participants added relationships between items. This was most prevalent in

the power stations dataset with requests for the number of people per house, power

requirements per building, and one instance of geospatial coordinates. In the file

system, additional data requests manifested as the wish for file sizes, code file types,

and suggested relationships beyond the folder structure. In the junk drawer, price,

durability, and nesting structures were suggested or imposed.

Participants also suggested a task associated with the data. With the power

stations, three participants wanted to solve which station produced the most or

least energy. Other assumed tasks included taking inventory (Participant 016),

cleaning (Participant 019), carrying (Participant 022), determining affected people

or buildings (Participant 029), solving a math problem (Participants 014, 031) or

presenting in a scientific journal (Participant 032).

Half of the participants (14/28) contextualized their dataset with a suggested

source or generator of the data. The junk drawer dataset was suggested to be

a “stationary drawer” (1 participant), “office supplies” (4 participants), and “an

electrician’s toolbox” (1 participant). Participants who received the file system

dataset imagined a new program or provided reasons why a program would be

organized in the given manner. Participants with the power station dataset supposed

that the data was for a “residential part of the city” (2 participants) or a “municipal

or power company guide” (1 participant).
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5.4.4 Beliefs about Data

In addition to our main themes regarding the content, elicitation, and formation of

mental models, we developed a secondary theme describing our observations about

participants’ beliefs about data and data analysis.

The idea that data relates to tables is prevalent (code D1). Four participants

who did not use tables mentioned expectations involving tables. The facilitator

asked Participant 007 if they were surprised that the junk drawer dataset was given

as a dataset and they replied, “I was expecting something more structured, maybe

like a table or something. I guess I was expecting a table. Because that’s the most

common form of storing data, like a spreadsheet or table, something like that.”

Participant 019 also received the junk drawer dataset and said, “I didn’t work with

Excel very much, so I don’t think of datasets, but when I heard the term ‘datasets’,

I really thought about the analysts I worked with and Excel data, and I thought

of big datasets and grouping people by demographics, that kind of thing. I refer

to datasets and I was familiar with them but I never thought of stuff like this as a

dataset.”

Two other participants mentioned using tables to organize the data via rela-

tional tables (Participant 030, bonus sketch) or to answer questions about the data

(Participant 014).

There was hesitation regarding whether the given dataset was truly data (code

D2). Initial impressions of the dataset included impressions on the term “data”

itself. Participant 007 concluded, “I guess this [the junk drawer dataset] is a valid

dataset, it’s got objects and quantities for those objects.” Participant 010 associated

the word “data” with relating to computers, and drew a Python-like dictionary of

the junk drawer dataset.

When asked about how often they visualize data, Participant 012 considered

that it “depends on what you consider data.” Participant 019 responded to this

question by relating data analysis to grouping people by demographics: “I thought

of big datasets and grouping people by demographics, that kind of thing.”
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Two participants made us question the distinction between the dataset and the

data. Participant 014 distinguished the dataset and the data within it as different

ideas: “like the emphasis should be on the dataset, not the data containing [sic]

in it, right?” Participant 027 didn’t think of the items in the file system dataset

as the data; instead, they assumed the data was inside those items (files) and not

explicitly given.

5.4.5 Differences between computing and non-computing participants

We recognize that the majority of our participants had a computing background.

While not part of our original experiment design, we revisited our codes to check

if any were heavily computing-biased in their evidence. Of our codes, the following

codes had solely computing-based evidence:

• Node-link sketched representations (all 9 node-link sketches were done by com-

puting participants– discussed in subsection 5.4.6),

• E1 (from 5 computing-related participants and 0 non-computing-related par-

ticipants): using abstractions in the depiction,

• F5 (4 computing, 0 non-computing): purpose-seeking by adding relationships

between items, and

• C5 (3 computing, 0 non-computing): using physical objects that were cited

from prior experience to represent data.

The code about math literacy (F7) was from 2 non-computing participants. All other

codes contained supporting evidence from both non-computing and computing par-

ticipants. See subsection 5.5.2 for more discussion on our participants’ relationships

to data.

5.4.6 Comparison to prior work on sketching and data reports

Given the similarities between our study and Walny et al.’s sketching study [151], we

examined our sketches on their numeracy-to-abstractness continuum. Figure 5.10
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shows our best-effort categorization, given that we used a different dataset and

therefore saw different data representations than Walny et al. (their dataset was a

table of behaviors in social scenarios). The session number for each sketch is placed

within the data representation category along the continuum. Possibly due to the

nature of our experimental datasets and population, we did not observe any sketches

in the “line graphs and parallel coordinates” category, nor any in the “ranked lists”

category. Of the 28 sketches (not including bonus sketches), 8 leaned toward the

numeric side of the continuum and 20 leaned toward the abstract side. The category

with the largest number of sketches for our participants is node-link representations,

whereas the most common representation for Walny et al. was bar charts. This effect

is likely due to the qualities of the datasets given to the participants.

Figure 5.10: Our categorization of data representations from the participants’
sketches, placed along the numeracy-to-abstractness continuum of Walny et al. [151].
Yellow shading indicates the participant has a computing background, blue shading
indicates a non-computing background.

Within each category of abstraction, there was a mix of computing and non-

computing participants represented, except for the “node-link/node-link hierarchy”

category (9 computing participants, 0 non-computing), “bar charts” (0 computing
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participants, 3 non-computing participants), and “table with symbols” (1 computing

participant, 0 non-computing participants). The prevalence of computing partici-

pants in the node-link category can partly be explained by the dataset they received:

6 of the 9 participants coincidentally received the file system dataset, and the other

3 received the power station dataset. These participants may be more familiar

with node-link diagrams, especially related representations commonly used in file

systems.

Walny et al. also examined the participants’ written reflections about what

they had discovered in their datasets, which the authors call data reports, and the

authors developed a data reports spectrum, which placed responses that contained

direct readings of individual data values at one end and higher-level conjectures and

hypotheses at the opposite end. A major finding from intersecting their participants’

sketches with the data reports was how “the participants who submitted the most

abstract sketches were among the participants whose data reports tended to be

in categories E3 (including extrinsic information) and F (statements with analytic

potential).”

To test this finding in our work, one author reviewed the interview transcripts for

such statements. The author chose to exclude statements in category E3 because

the interview question, “How did you come up with this idea? Have you seen

something like this before or have you worked with a dataset like this before?”

prompts the participant to relate the data to external information, which would not

be an organic source for such statements. Therefore, only F statements, statements

that offer fledgling hypotheses or conjectures about reasons for values, were included.

For example, an F statement from Participant 008 is, “I mean, I don’t know what

their fuels are, I’m assuming they’re maybe coal-powered power plants.” Another

example is from Participant 009: “I don’t know how big it [the file] is, at the end

of the day, right, so the text file could be bigger... could be super big, could be

smaller.”

We found such F statements (statements with analytic potential) from 14 par-

ticipants. Of those 14 participants, 11 of the participants’ sketches fell on the more
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abstract, pictorial side of the continuum, supporting Walny et al.’s finding that

participants with more abstract sketches included statements that were more ana-

lytic on the spectrum of data report statements. Our results thus show reasonable

agreement with those of Walny et al., given the differences in study design.

5.4.7 Comparison to prior work on mental models

Our findings bear similarities to the Paris map study of Milgram and Jodelet [99].

In that study, an individual’s mental model of their hometown included important

locations and roads connecting them, and their personal background influenced the

order and size they drew these locations. In our study with datasets, we observed

specific data points had personal connections, like the locations in Milgram and

Jodelet, but also outliers were of interest. We further observed that people drew

from their personal knowledge to communicate “rules” of the dataset, which they

utilized to determine outliers or suggest new data. For example, some of the File

System participants suggested alternate organizations based on file types.

Other prior work evaluated the accuracy of people’s mental models when learning

new phenomena via text and visual elements, only text, or only visual elements [21,

129, 58]. However, most datasets start as text-only collections and are frequently

not human-readable, so we did not present visuals and provided only text. Datasets

may not necessarily have relationships explicit, but rather are for the individual to

determine, leading to more ambiguity as we observed.

Across studies, participants choose to emphasize elements and connections in

the dataset that they have a special connection to, that reflect aspects of their

demographics and background, and draw inspiration for their drawings from other

maps and data visualizations that they had seen. Like eliciting the Parisian maps

and our dataset sketches, people have a wealth of knowledge and expertise that

they may not realize. They have an intuition about the dataset and have an idea

of what “makes sense” in the data, even if some of these ideas may be inaccurate.

This knowledge may be subconscious yet useful for visualization designers, especially

the unwritten “rules” of a dataset. Further work in this area can help visualization
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designers work more efficiently and produce more useful visualizations for their users.

5.5 Discussion

We discuss our findings regarding the research questions we initially posed. We

then discuss the limitations of the study. Finally, we discuss the implications of our

findings for visualization design.

5.5.1 Revisiting our Research Questions

Our study was inspired by the research questions listed in section 5.1. We revisit

those questions and discuss our discoveries towards them.

What factors influence people’s initial mental models of data? We ob-

served that participants quickly came to their mental models, with several (11/28)

expressing how they would represent their mental models right after reading the

dataset. Most (17/28) remained consistent in the high-level data types they sketched

and discussed, though details regarding the particular encodings required further

consideration. This consistency leads us to believe that the sketches and descrip-

tions were close representations of the participant’s mental model in many cases.

In a few cases, however, a participant realized their mental model required revi-

sion. While drawing they realized their approach did not permit them to add all of

the data from the paragraph (code E2). Some also expressed the desire to approach

it differently after they had completed their first sketch.

When discussing how they arrived at their mental model, many participants

(16/28) related their sketch to something they had seen before, some directly ap-

plicable to the data, such as operating system file browsers for the file system (7

computing participants, 1 non-computing participant), and some less direct. Two

participants discussed recent sources of inspiration such as coursework. We hypoth-

esize that our participants were able to connect their mental models to existing

visualizations and data representations because of the accessibility of the datasets
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and the data-literate background of our participants. Further study is needed on

less-accessible datasets and people with low data literacy.

Ideas about data organization and structure also influenced how our participants

sketched the datasets. Three participants suggested expectations regarding how

“data” should be organized. Four participants suggested their model was obvious.

Our participants’ mental models were also influenced by inferred purposes, which

had implications for the corresponding data abstractions. Participants added pur-

pose and context to the dataset by suggesting a generator for the dataset, problems

to solve with the data, or insights they wanted to glean from the data (see codes F4,

F5, F6). The inferred purposes led them to further suggest more data or attributes

that could help achieve these imagined purposes and create more elaborate mental

models than ones based strictly on the data alone.

What encodings and visualizations do people commonly use to commu-

nicate their mental model? We observed a variety of encodings and visual

representations. Tables, node-link diagrams, containment/enclosure, indented nest-

ing, icons/physical depictions, proximity for grouping, and bar charts were each

seen multiple times (see Figure 5.10). Beyond bar charts, there were no common

statistical charts. This may be an artifact of our dataset design, which was designed

to enable the use of one of several data abstractions from data typologies.

The least diverse set came from the file system prompt, where node-link diagrams

and enclosure were common approaches, though one participant drew a physical

depiction inspired by Windows icons (Participant 015).

Participants used a range of specificity and generality in their marks, for different

reasons. Many participants used abstract marks or elided details, some from the

beginning of their sketch and some changing to more abstract marks along the way

for efficiency during drawing (5 participants remarked when they deliberately made

this choice). We saw text used in tables, bar charts, file system icons, and labels, and

exclusively text in three of the junk drawer depictions rather than physical icons.

Participants explained that their use of text was to clarify (when representations
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were unclear or they wanted to specify) or to simplify their representations (rather

than drawing items). These explanations may indicate that the participants were

unconsciously aware of their communication efforts: they used a shorthand version

of the representation and skipped drawing details when they felt a viewer could

understand what they meant, yet they added text to clarify when they felt a viewer

may misunderstand a sketched representation.

How do they describe how they think about the data? How do people de-

scribe their sketches? We observed a spectrum in the level of detail participants

expressed when describing their sketches. The level of detail ranged from essentially

repeating the dataset, to describing a verbal legend of the marks, to naming the

data abstraction or representation. This differing specificity has implications for

how people communicate about datasets and how they emphasize important as-

pects of datasets or visualizations. Two people with the same dataset may value

different levels of granularity in the data (e.g., one may care about individual data

point values while another may only want to see regression lines). A visualization

designer must be sensitive to both perspectives and weigh how or if they want to

encode the data to support these views.

Participants made deliberate presentation choices with their sketches while pre-

senting their sketches to the facilitator. Some participants added detail either to

clarify the depiction for the facilitator or to emphasize parts of the sketch to the

facilitator, e.g., circling the part they were explaining. Some participants also sug-

gested changes they would make for another audience, such as re-orienting the sketch

to make it easier to read, changing the data abstraction entirely, or adding more

explanation or a legend. These changes in presentation pose interesting questions

on the transferability of mental models of datasets and how well a person can com-

municate their mental model to one another to create a shared understanding of the

data.

In the post-study demographic questions, participants described how often they

visualize data by citing software (e.g., Excel, Tableau, D3), types of charts (e.g.,
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box plots, radar graph, bar graph), but also describing mental imagery (internal

visualization) and plain visual representations (e.g., a list, note-taking). The par-

ticipants who mentioned software described interacting and analyzing data through

the use of spreadsheets and statistical software. The participants who interpreted

“visualize” to mean “imagine internally” gave more descriptive answers about how

they mentally interact with and think about data. These participants described

estimations, relationships, and trends in data, and used more inward vocabulary

(“organize in my brain”, “imagine in my mind”).

How difficult is it for people to sketch and/or describe their mental

model? How difficult is it for us to understand? Nearly all participants

began sketching right after our discussion, with some attempting to draw before the

initial discussion question. Participants paused during their sketching when they ran

into a space constraint, schema constraint, or an outlier (e.g., the warehouse in the

power station dataset), but otherwise, drawing was uninhibited. Occasionally they

paused to evaluate their current sketch and then modified it. Often participants

paused when asked what sticks out in the dataset, suggesting they were thinking

and evaluating the dataset against previous experience or searching for outliers.

The participants who quickly expressed an answer to what sticks out had typically

mentioned the phenomenon earlier (e.g., how to draw the code files, the structure

of the file system, the warehouse or apartments in the power station dataset).

When asked to describe their sketch, depending on the level of detail given, the

facilitator asked questions to try to better understand their mental model and to get

verbal descriptions of the visual phenomena. Some participants willingly launched

into more detail about their sketches with minimal prompting. The participants

that were less willing to discuss details of their sketch may have felt their sketch was

self-explanatory—a trend with some of the sketches of tables and pictorial sketches

of the junk drawer. However, those participants did have ideas about the data itself,

hypothesizing about the source or asking for different attributes or more data.

We encountered difficulties in classifying the mental models. There were ambi-
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guities in the terms used. Understanding the relations between data items and the

structures that the participants imagined was especially difficult due to the ambi-

guity of terms. Another ambiguity was that participants suggested their model was

obvious without a line of reasoning. Some used language that read the data back

rather than describing the data in a new way, whether it was the individual items

or more holistic descriptions like “a folder structure.”

While we are not confident we fully understood any participant’s mental model,

or we ever could, the combination of sketching and semi-structured interview did

help us gain a significant understanding in a relatively small amount of time. Per-

haps a second step where the facilitator and participant draw a second dataset

independently, with the facilitator trying to mimic their understanding of the par-

ticipant’s mental model, may serve as validation of our understanding.

5.5.2 Limitations

We discuss the limitations of this study concerning the participant population, the

dataset prompts, and the study procedure.

Limitations in participant population

Our participant population was likely biased toward more data-literate people. This

is probable for three reasons: (1) all sessions were organized and conducted online

over Zoom; (2) the header of the advertisement for the study was “How do you

imagine a dataset?”, which may have attracted people interested in data; (3) due to

the ongoing pandemic, we did not recruit participants in person in common high-

traffic areas, aside from a trio of flyers posted at a local YMCA.

In particular, we had a high proportion of participants with computing-related

occupations (16 students, 3 professional developers, and 1 manager), which may have

influenced the breadth of data abstractions we identified. Computing participants

were the sole users of node-link diagrams, though this is in part due to their high

concentration among File System participants. However, even with this almost
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homogeneous set of participants, we observed diversity in their representations, data

abstractions, and ways of speaking about the File System dataset. This diversity

could be magnified with a more diverse group. Our analysis of data abstractions

used across all participants (code C1, figures 5.3, 5.4, 5.5) showed that other than the

node-link diagrams, visual forms used by several participants were mixed between

computing and not-computing participants.

We also collected the age of our participants to see if there was a relationship

between the participant’s mental model of the file system dataset and their age.

The younger participants tended to be computer science students or similar so they

were familiar with file systems. Thus, we saw no relationship between age and

understanding of file systems.

Limitations in the study dataset prompts

The datasets we designed do not represent the full spectrum of data we see across the

field of visualization. For example, continuous values are not directly represented

in these datasets, which focus more on counts and relations. Still, one participant

considered geographical location as a missing column in the Power Station dataset

and showed how they would include it in their thinking.

All three datasets had data items that have relations to concrete objects (e.g.,

files and folders, office items, buildings). This was done to make the data more

accessible to a wide audience. More abstract items are not handled in this study.

We did not include the names of these datasets when sharing them with participants,

to avoid further bias. However, the strong semantic meanings of the data items may

have influenced our findings in ways that we would not observe with more abstract

data.

Regarding the semantic forms associated with the data, some of the authors

initially had strong semantic notions, like “a file system is obviously a tree,” but

informal discussions revealed that these notions are far from universal, which was

an impetus for the research questions and later the dataset prompts.

We decided against providing purpose, a context of use, or tasks with the
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datasets. Our rationale was that early in the design process, these tasks and data are

often in flux. However, there is typically some notion of purpose for a visualization

(e.g., to analyze, compare, or predict) that will influence tasks. Data abstractions

are often task-sensitive, so by omitting purpose or a set of tasks, we may have ob-

served a more diverse set of data abstractions than in a purpose-influenced study.

We hope purpose and task influence can be further explored from this study’s base-

line.

Our dataset prompts are small in the number of data items. We chose the small

size so participants could consider and sketch the full dataset. When communicating

with visualization designers, collaborators often start by offering a toy dataset to

aid their explanation, which is closer to the dataset size we use. Further research is

needed to understand the strategies people have in forming a mental model of bigger

datasets. Thus, our study does not answer questions as to how participants’ mental

models might change between a toy and a full-size dataset, how they communicate

datasets too large to draw, and how they might choose to describe and represent

the data, for example in terms of overviews, details, or aggregations.

In addition, the datasets and design of this study do not cover uncertainty in

data, dynamic data, or data that necessarily forces multiple abstractions. Therefore,

we do not report on these cases but note that even in our simple case, we observed

diversity in data abstractions and difficulty in describing relations, thus we would

expect more pronounced indications of these phenomena in more complicated data.

We presented the datasets as a text paragraph to avoid adherence to a given data

abstraction or representation, such as a table, observed in prior studies [10, 149].

However, we did observe a tendency to observe the listed order in the paragraph

rather than re-order the data among some participants, especially in the Junk

Drawer dataset. This could indicate the participants were basing their model on

the implicit list. This was not universal though, as other participants re-organized

the same dataset.

On a more specific note, there was some confusion with the “long plastic basket”

in the junk drawer dataset. We envisioned this to be a holder for envelopes or
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writing implements, but we received many different interpretations that revealed

the ambiguity of the word “long” (Participants 013, 019, 022).

Limitations in the study procedure

Our aim with this study was to capture the initial mental models of people regard-

ing data form and abstractions, before being presented with one. We acknowledge

that mental models are ever-evolving and that mental model elicitation is difficult

[71]. We chose a direct elicitation technique via interviews and drawing as it is as

effective as others. Like other mental model elicitation methods, it can only provide

a representation of the mental model and is dependent on the participant’s drawing

and verbal descriptive abilities, as well as the skill of the interviewer and their ability

to build trust for productive communication. Our choice of paragraph representa-

tion, the initial gut reaction question, and the interview question regarding whether

participants felt their mental model had changed were all designed to help assess

whether we were achieving our target and to provide more data about early changes

in the data mental model.

Through our semi-structured interview discussions, we found a mix of partici-

pants, some who claimed their mental model was unchanged and others where the

changes were apparent from their words.

Some participants expressed confusion in response to the initial question after

they read the dataset: “What was your gut reaction or intuition about the dataset?”

While we intended to capture open-ended responses, participants sometimes asked

us to clarify what we meant by “gut reaction.” This confusion may have influenced

their responses or the responses of others who were confused but did not vocalize

their confusion.

5.5.3 Implications for the Data Visualization Design Process

We share implications about mental models and participants’ thoughts on data for

the visualization community.
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Personal Mental Models

Beware of data abstraction elephants. We observed diverse data types and

visual representations arising from our study datasets (code C1). Even in the file

system case, where most participants cited a similar source of inspiration, partici-

pants sketched a variety of concepts and imparted differing grouping biases. Across

all datasets, some participants were influenced by recent events in their life (e.g.,

labmate’s talk) or by expectations of what ‘data’ in general should be, rather than

the dataset at hand (code F3, code D2). These realities present hazards in choosing

effective data abstractions. We suggest that designers sample multiple target users,

potentially multiple times, so that our interpretation of our users’ mental models

can solidify. Once solid, we can better identify what data abstractions best align

with these mental models.

Visualizing and discussing help elicit a person’s mental model compre-

hensively. The varying levels of verbal descriptions of their sketches (code E8),

the assortment of terminology used about their data abstractions (code E7), and

the range of data abstractions (code C1) suggest that people can generally explain

their mental model well but need multiple avenues to externalize it. The discus-

sion with Participant 014 (see code E7) and prior work with visualizing genome

sequences [108] show that observing problem-solving can expose underlying aspects

of the mental model.

We observed that participants tended to overestimate what is “obvious” in their

mental model, a psychological phenomenon shown in a visualization setting by Xiong

et al. via a controlled study [159]. The lack of legends (code E5) suggests that the

sketch is truly the user’s mental model of the dataset, but makes understanding

the sketches difficult for anyone but the sketch’s author. We suggest visualization

designers solicit conversations and sketches about the dataset—not of chart or repre-

sentation types—from their users. Centering the conversation on the dataset, rather

than a representation, will focus the conversation.
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Different abstractions support different mental affordances, indicating

tasks. Although visualization researchers tend to consider interactivity in the con-

text of a visual design, people readily described their mental models in interactive

terms, often with only loose—if any—association to specific visual encodings (code

C7).

We suggest designers consider the interplay between the tasks that different data

types readily afford and note the interactions that the users describe. For example,

a table lends itself naturally to sorting, whereas a graph lends itself more naturally

to navigation. The affordances of the specific data abstraction that a person latches

onto may betray the tasks they most need to perform. Conversely, a given data

abstraction may inspire specific, predictable forms of purpose-seeking (code F5).

Ensuring task and data abstractions are aligned may translate to more intuitive

interactions and more effective visualization designs.

People’s views about what data is and what it isn’t may limit ideas

during data creation. Several participants related data to tables, computers,

Excel, or database tables (code D1). They had definitions for what “data” is and

what it isn’t (code D2). This may limit or expand the data abstraction. These

ideas are important to discuss during data reconnaissance [34] and throughout the

creation of the data abstraction. We suggest visualization designers provoke users by

proposing alternative data abstractions, sources, and formats that may help expand

the definition of data and uncover latent data abstractions [13].

Before Designing Visualizations

Visualization design starts with data design. Many of our participants imag-

ined beyond the dataset. They suggested possible sources of the data (code F6),

invented tasks to be done with the data (code F5), and wished for additional data

or information (code F4). This curiosity may be due to the participants having no

relationship to the dataset, but could also be due to inherent curiosity.

This creativity can be useful to visualization designers, as it highlights what as-
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pects of the data the user finds relevant and the tasks and operations the user wants

to execute. If possible, when encountering a situation with “no real data available

(yet)” [133], visualization designers have a chance to be part of the data design

phase. We define the data design phase as an unconventional part of the Design

phase in the design study methodology where the contents, attributes, and format

of the data is still under discussion even though the design study process has begun.

In such a scenario, visualization designers should engage in these conversations with

their collaborators. By being present in these discussions, designers can better un-

derstand the priorities and motivations of their users. An alternative would be to

have the users recreate the dataset from memory; the features and entries that the

user finds most important will likely be remembered.

Extra care must be taken when eliciting data abstractions with relations

between data items. We observed participants used a variety of terms and visual

representations when there were relations between data items (code C6). Some used

terms that were inconsistent with the visualization community’s definitions (code

E7). It was difficult to confidently determine the participant’s mental model despite

their language and sketch. Even when there were similar visual representations

among sketches, such as in the file system dataset, the ways they were spoken about

were different.

These observations suggest that visualization designers should practice extra

care when eliciting data abstraction when relations are present. One example may

not be enough to determine the nature of the data described. If we were to probe

further, a set of relation assertions (e.g., “connections like this may never occur”)

may elicit more detail. However, there are some abstractions where the structures

may be the same but the meaning and conventions are different, such as trees and

hierarchies, where this approach alone would not be enough.

The way people express relations between data items suggests a contin-

uum of data abstractions. Visualization designers may be able to leverage
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this fluidity. Another way to interpret our observations regarding how people or-

ganize relations between data items (code C6) is that the data abstraction classifica-

tions represent examples in a continuum of data abstractions. This continuum does

not seem to have clearly defined axes but instead seems to be a continuous space

of how they organize data without the strong boundaries associated with data type

classifications and taxonomies. Datasets do not need to fit one named abstraction.

We observed Participant 030 refine their data abstraction from a hierarchy to a net-

work when considering how the dataset might be stored in a database. Participant

018 spoke of sets and hierarchies together. This suggests there may be utility in

representations that allow people to leverage these multiple ways of abstracting the

relationship structures in the data.

Suggesting multiple audiences can elicit multiple data abstractions.

When the topic of communicating with other people was discussed we observed par-

ticipants changing their sketches, or claiming they would, sometimes to the point of

selecting a different data abstraction. This behavior could be employed to explore

several useful abstractions of the same data. There may be differences among what

they would sketch for themselves, how they would communicate their mental model

to someone else, and how they would communicate the data to someone else—or

potentially multiple such “someone elses.”

Multiple audiences may also help identify cases where people bow to expectations

about how they are “supposed to” visualize data. We observed expectations regard-

ing what is considered “data,” including tables, demographics, and counts. Such

conventions may lead to less useful abstractions. Prior work in creative visualiza-

tion workshops and collaborative prototyping provides a framework for facilitating

exploring alternative, useful design ideas [78, 39, 40].

5.6 Conclusion

We presented a sketch-based study to probe people’s mental models and their corre-

sponding data abstractions before they are given visual or other structural cues. We
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observed diversity and fluidity in the mental models that participants described and

the data abstractions and visual representations that the participants used. This

diversity can be influenced by several factors including examples from their lives,

common approaches to the context, things they had seen recently, imagined tasks,

and their conceptions of what “data” is and the conventions that come with it. We

also observed that participants used a variety of terms and relations to describe the

data and their sketches and would reconfigure their model when considering differ-

ent audiences. These observations suggest that care must be taken when eliciting

descriptions of data for the process of data abstraction and visualization design,

but also offer options for leveraging the data design process to further probe user

needs and possible abstractions, as well as opportunities to use the framework of

communication to explore the data exploration space.
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Family and Friends Summary: Our work in the previous section shows that the

choice of data abstraction can change how the user understands the visualization.

The choice of data abstraction is important – a visualization designer could base

their design on a tabular abstraction, but the user might know of hidden connections

in the dataset and so may think of the data as a connected network. If so, the table-

based visualization that the designer made will be more difficult for the user to

interact with and understand. This multi-perspective take on datasets is similar to

the fable about the elephant. Five people in the dark encounter an elephant for the

first time, and they each come to a different conclusion (e.g., the one who touches

the tusks thinks an elephant is like a spear).

We conducted a study to see what conclusions people would make from our “data

elephant”, i.e., our cleverly designed datasets in paragraph form. After reading

the dataset, the participant sketched their mental model of the data (to see the

datasets and try your own sketch, jump to subsection 5.3.3). We saw all sorts of

data representations and data abstractions appear in these sketches, even though

the participants used the same dataset. The variety and creativity shown by the

participants can help visualization designers better understand how their users think

about the data, which results in a more useful visualization for the user.
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Theme Code Representative example/Evidence

Depictions of mental models

Used text to clarify (E3)
Participant 009 (FS) calls the files “.java”
so that “we can be more explicit.”

Legends/verbal legends (E5)
Participant 006 (FS) verbally
explained the icons used for file types.
Participant 032 (PS) made a legend.

Used abstractions in depiction
(sometimes laziness, sometimes
deliberate) (E1)

Participant 008 (PS): “...just repeating
the picture of the power plant but then
I got lazy and then just drew a square
for the power plants.”

Constrained by sketches (E2)

Participant 007 (JD): added Sharpies
outside of pencil pouch because “I
didn’t make the pouch big enough.”
Participant 016 (JD): “I had to skip
back here [to the left] to fill out the
rest of the space.”

Added details to clarify (E4)
Participant 020 (PS): suggests adding
weights to directed arrows, “it would
be an improvement.”

Communication with others
Conflict of the terminology used (E7)

Participant 006 (FS) drew something
closer to a node-link diagram but their
description was more set-like (“levels”,
“within”, “in the folder”).

Range of description detail from literal
to abstract/overview (E8)

5 participants did not describe the
drawing and instead restated the
dataset (4/5 were CS-related
participants). 15 participants gave
a visual description of the icons and
marks (13/15 were CS-related
participants). 8 participants named
a data abstraction or data chart type
(4/8 were CS-related participants).

Changes to depiction for communication (E6)

Participant 021 (FS) said they would
draw the tree left-to-right to better
communicate with others and
attempted to add interaction
indications.

Table 5.3: Themes about Mental Model Elicitation. This table contains our themes
and codes about mental model elicitation, as well as representative examples for
each code. The codes are labeled as “E#”. The complete list of codes and all sup-
porting evidence can be found at https://osf.io/kvnb9/ and in the supplemental
material.

https://osf.io/kvnb9/
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Theme Code Representative example/Evidence

Mental model formation process
Immediate mental model formation (F1)

Participant 024 (PS): in response to the
first question, “My gut reaction was like
an image of—I dunno if you know cell-free
MIMO graphs...”

Mental model did not vary much or at all
for 17/28 participants (F1)
* Caveat: changed significantly for 4
participants due to changes in data
abstraction representation (F1)

Participant 018 (FS): “No, I mean I kind
of saw it for how I was gonna do it right
away and stuck with that.” Participant 016
(JD) considered “maybe there’s a better
way to accurately display—because it sounds
like this is someone inventorying the items...
I wish there was a way that I could highlight
that, or draw attention to that this [the stamp
roll] is probably more important than rubber
bands and tacks.”

Mental models became more detailed (F2)

Participant 013 (JD): “In the beginning, I was
just thinking about the basket and then I
started to remember how things were more
clearly, so I started drawing slightly more
elaborately and really thinking about what
I wanted to draw.”

Influences on the
mental model formation

Explicit mental model origins (F3)
Participant 006 (FS): “The [Windows]
file system, the file structure, has definitely
left a mark on me.”

Purpose-seeking: Participants added
or assumed tasks (F5)

Participant 019 (JD) associated the dataset
with cleaning or organizing their desk.
Participants 011, 014, 032 (PS) all sought
to discover ultima (e.g., the maximum power
produced).

Purpose-seeking: Participants suggested
data sources (F6)

Participant 017: “I dunno, it’s a power station,
it’s probably a municipal guide or a power
company’s guide to how to distribute power.”

Purpose-seeking: Participants desired
to add data/information (F4)

Add data attribute: Participant 029 (PS) wanted
to add people per house.
Add relationships: Participant 013 (JD) wanted
to add relationships between items.
Add naming schema: Participant 018 (FS)
wanted to add folder names.

Lower math literacy works against
the mental model (F7)

Participant 023 had difficulty with
multidimensional aspect of power station data,
dropped the power stations’ label dimension
(i.e.,A–F labels).

Table 5.4: Themes about Mental Model Formation. This table contains our themes
and codes about mental model formation, as well as some representative examples
for each code. The codes are labeled as “F#”. The complete list of codes and all
supporting evidence can be found at https://osf.io/kvnb9/ and in the supple-
mental material.

https://osf.io/kvnb9/
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CHAPTER 6

Conclusion

In this dissertation, we explored different levels for understanding data: internal

structures (i.e., mental models), abstract scaffolding (i.e., data abstractions), ex-

ternal visuals (i.e., data visualizations). Internal mental models contain personal

connections to the data, incorporating the user’s knowledge on the topic, prior ex-

perience with similar data, and personal interests in the data. Data abstractions

provide a way to connect these specific mental models to more general structures,

like a tabular, network, or spatial data abstraction. Data abstractions are estab-

lished concepts in the data and visualization worlds, so there exists terminology

to describe these concepts and default common visualizations used to display these

abstractions. Visualization designers use data abstractions to “translate” personal

mental models into more common abstractions that both the user and the designer

can understand.

We investigated the flexibility and relationships between mental models, data

abstractions, and visualizations throughout this dissertation to explore how the

visualization community can best design for our users. We observed this malleability

in three scenarios. First, in the design of the tree visualization Atria in chapter 3, our

users’ consistent mental model of a tree allowed us keep the tree visualization that

we had developed. We preserved the extra graph edges to accurately represent the

data, but our users’ mental models and understanding of relationships in programs

meant that we could show these edges on demand, instead of permanently displaying

them. This case shows how visualization designers can leverage their user’s mental

model to guide design decisions.

Next, during our survey of data abstractions in chapter 4, we saw that domain

experts were able to shift their dataset from one data abstraction to another, al-

though they did not always enjoy the process. Changing abstractions often required

adding properties to the data, like adding a timestamp or creating edges between

data. While this transition required extra work and creative thinking, it allowed
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for new insights to arise from the data. Sensitivity and care should be taken by

the visualization designer when undertaking a similar exercise because our domain

experts often had a preferred data abstraction and an established data pipeline,

leading to resistance when considering alternatives.

Finally, in our study of mental models in chapter 5, we saw participants vol-

untarily include different data abstractions and visualization representations when

discussing different use cases of the data. Participants considered how an alter-

native audience might view the visualization and described how they would make

modifications. Our participants added qualities to the data and invented tasks for

the data, which unveiled a hidden creativity and curiosity about the data. Data

design is not usually emphasized in the design study methodology as a task for

both the visualization designer and the domain expert; however, our results show

that exploring the data “jungle” together with the domain expert can elicit useful

information about the data and influence visualization design choices.

While we did not define a set method for eliciting mental models in the visu-

alization design methodology, we gained insight into the mental models of domain

experts and novice users and connected these mental models to more concrete data

abstractions. Our users view our visualizations and understand data with a variety

of backgrounds, knowledge about types of visualizations, and ways of interacting

with data. If we can better understand how the user understands, problem-solves,

and manipulates their data, we can design visualizations that more closely align

with their existing mental processes and workflow.

6.1 Limitations and Future Work

This dissertation provides initial work in how the mental model of a dataset can

be used to influence visualization design, benefiting both our users and ourselves

as visualization designers. Each of these three works supports the idea of probing

our users about their mental models of data using external artifacts (e.g., a proto-

type of a graph, a list of possible data abstractions, a sketch). In these situations,
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we deliberately challenged our users’ assumptions of the data and visualization by

provoking responses like “That wouldn’t work because...”, “That makes no sense”,

or “Obviously I drew it this way...”. In this work, we advocate for sincerely and

creatively coming together with our users to uncover their insights and opinions

and about their data, before any visualization influences discussions. Our results

have shown how this lateral approach to data design and visualization design can

reveal data insights and data abstraction preferences that might not have come up

in conversation.

Changing our approach to selecting data abstractions based on the person-centric

mental model versus the data-centric dataset can potentially improve the clarity

of our designs, leading to our users more easily adopting the visualization. This

approach can also help us as designers to better understand how our users think

about and interact with the data, leading to a more streamlined design process and

a stronger understanding of the expected tasks. Throughout our interactions with

data workers, we observed that suggesting a concrete abstraction, particularly one

that was unlike how the data worker usually conceptualized their data, elicited rich

feedback about their data and their thinking on it.

In chapter 3, we showed a case study in adjusting the design in accordance to

the mental model. This detailed example showed the steps we took to succeed in a

pitfall-laden environment. We provide guidelines for other practitioners to follow but

recognize the uniqueness of our situation. When appropriate, we encourage fostering

a synergistic environment between visualization designers and their collaborators

to that traditionally challenging visualization projects can succeed in spite of the

pitfalls.

In chapter 4, our choice of data abstractions for our data typology was both a

weakness and a strength. Our participants in the survey left feedback when they

felt they needed to use a different abstraction or if they thought their data did not

fit any one particular abstraction. Ultimately, these comments and discussions in

interviews would not have happened if we did not present a typology in the first

place. Further work is needed to evaluate how to effectively harness exploring the
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abstraction choice with one’s collaborators during the design phase.

In chapter 5, during each sketching interview, we presented the participant with

a small dataset in paragraph form. These datasets may be an unrealistic represen-

tation of real-world data for analysis, but given that many visualization designers

are given small “toy” datasets at the start, we felt our datasets presented a similar

scenario to our participants. Exploring larger, more complicated datasets would be

an interesting future direction of this work to see how the participant aggregated

the data or divided it into sub-units. More work is needed to test various methods

and questions for eliciting mental models in formal design study scenarios and to

develop guidelines as to how to conduct these discussions.
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Family and Friends Summary: We explored the jungle of data abstractions with

different perspectives. With the tree visualization Atria in chapter 3, our users’

mental model helped us move from a graph abstraction to a tree abstraction. This

showed us data abstractions can morph, which is a useful technique for visualization

designers and an idea that we further tested through the survey in chapter 4. We

prompted data experts to think of their dataset using an alternative data abstrac-

tion. The data experts were able to morph their dataset into a different data ab-

straction, finding new angles to look at their dataset, even though the change might

not be part of their workflow. Finally, we conducted a study where we presented

a paragraph of data for the participant to sketch, to see what data abstractions

and representations they used. Each participant had a unique perspective on the

dataset, resulting in different drawings, inventing a purpose for the dataset, and

creating tasks to perform on the data (e.g., find the power station that produces the

most power). Visualization designers can use their user’s knowledge and creativity

before the design process to better understand the scope of the dataset and the tasks

the user wants to accomplish.

This dissertation opens up ideas and discussions for visualizations designers and

users about data so that the user ultimately receives the best visualization for their

needs. Through the prior chapters, we demonstrated evidence that proposing alter-

native data abstractions can spark useful conversations about data and tasks, and

that users can help in this process by providing their expertise and creativity. This

brainstorming about data, rather than about visualization designs, should happen

early in the design process as it gives both the user and the designer a better un-

derstanding of the dataset and the priorities and tasks the user has for the dataset.

Ultimately, these discussions could help streamline later aspects of the design pro-

cess and result in visualizations that better fit the users mental model. The next

step for this line of thought would be to include data abstraction and data discus-

sions during the design study process, and to reflect and evaluate the functionality

of the discussions.
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