
Visualizing a Moving Target: A Design Study on Task Parallel
Programs in the Presence of Evolving Data and Concerns

Katy Williams, Alex Bigelow, and Kate Isaacs

Fig. 1. Design Study timeline (log scale). The top contains a mark for each collected artifact. Connections to identified goals, sub-goals,
and tasks are marked when direct evidence for them has been identified. Artifacts from meetings presenting major design changes and
notes from the evaluation sessions of Section 7.2 are indicated with color. The bottom shows the timing of various deployments with
users. This rich collection of over 150 artifacts mitigated issues in designing around shifting data and concerns.

Abstract—Common pitfalls in visualization projects include lack of data availability and the domain users’ needs and focus changing
too rapidly for the design process to complete. While it is often prudent to avoid such projects, we argue it can be beneficial to engage
them in some cases as the visualization process can help refine data collection, solving a “chicken and egg” problem of having the
data and tools to analyze it. We found this to be the case in the domain of task parallel computing where such data and tooling is an
open area of research. Despite these hurdles, we conducted a design study. Through a tightly-coupled iterative design process, we
built Atria, a multi-view execution graph visualization to support performance analysis. Atria simplifies the initial representation of the
execution graph by aggregating nodes as related to their line of code. We deployed Atria on multiple platforms, some requiring design
alteration. We describe how we adapted the design study methodology to the “moving target” of both the data and the domain experts’
concerns and how this movement kept both the visualization and programming project healthy. We reflect on our process and discuss
what factors allow the project to be successful in the presence of changing data and user needs.

Index Terms—design studies, software visualization, parallel computing, graph visualization

1 INTRODUCTION

When choosing whether to move forward with a design study there
are several questions a visualization expert should answer to ensure
project viability [58]. Among those questions are: (1) whether real,
non-synthetic, data is available, and (2) whether the tasks that do-
main experts will use the visualization for will persist long enough to
complete the study. Ensuring these points can help avoid problems
arising in designing for the wrong data assumptions or having the users
lose interest before the system is completed and evaluated. While in
most cases it is prudent to avoid these problems, we argue there are
circumstances in which it is fruitful to accept them.

In particular, there are scenarios where precisely what data to collect
is an open question. The answer would ideally be driven by what
analysis needs to be performed. This “chicken and egg” situation
can dissuade both domain and visualization experts from engaging.
The domain expert does not want to collect data with no plan for
analysis. The visualization expert cannot act without real data. Thus,
an opportunity for visualization to inform the data collection process is
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lost and the greater problem remains unsolved.
We observed this scenario in the domain of task-parallel computing.

Parallel systems are challenging to comprehend due to their complexity.
Several factors affect performance and correctness including program
source code; the parallel libraries used; the input to the program; and
the architecture of the cluster on which it is run. Understanding the
emergent behavior in these systems is necessary to optimize and debug
them. While some areas of parallel computing have a long history of
data collection for performance analysis, the data necessary to analyze
a more recently prominent model—asynchronous many tasks—is a
relatively open area.

Recognizing the pitfalls of changing data and concerns, but also the
potential of using visualization to help drive the development of those
data and concerns, we proceeded with the design study. Although the
pitfalls could have derailed the project, we found other factors—such
as the shared interest in the data collection problem and the identifi-
cation of key recurring abstract structures—resulted in the creation
of visualizations that were beneficial even as things changed. From
these experiences, we demonstrated how the benefits of visualization
are not only the design of the final solution, but the integration of the
visualization team and its effects on the overall project development.

We describe our iterative design process and how we adapted the
design study methodology [58] to the “moving targets” of our data and
user tasks. Our task analysis and abstraction were developed through
multiple rounds to account for evolving concerns.

Through this process, we developed our technology probe [27],
Atria, a multi-view system for exploring execution graphs. Unlike other



execution graph visualizations, we display the graph as an expression
tree, evoking the main logical dependencies of the computation while
preserving additional edges on demand. Atria provides the context of
source code to the execution graph not only through linked highlighting,
but also through a default aggregation and de-cluttering scheme based
on line of code.

We further discuss how the changing concerns affected deployment
with implications for design, particularly in the case of Jupyter note-
books [37]. We augment our assessment of our design with evaluation
sessions and semi-structured interviews.

The major contributions of our study are as follows:

• A task analysis for execution graphs (Section 5) and how we
iterated on that analysis under changing conditions,

• The design of Atria, a interactive visual tool for analyzing task
execution graphs (Section 6),

• A discussion of the design adaptations and the difficulties of incor-
porating visualization within the Jupyter notebook environment
(Section 6.4), and

• Reflection on the project and recommendations for conducting
design studies in the presence of evolving data and concerns
(Sections 4.2.1, 4.2.2, and 8).

We discuss related work (Section 2) followed by necessary back-
ground in task-parallel execution graphs (Section 3). We then discuss
the organization of the project (Section 4.2). We conclude in Section 9.

2 RELATED WORK

We discuss related work in design study methodology, task abstraction,
visualization of execution graphs, and tree visualization techniques.

Design Studies. We report on the initial phases of an ongoing
design study, including multiple deployments of our system, Atria, as
a technology probe [27]. This process has enabled us to collect rich,
qualitative data. While informing future iterations in our collaboration
with domain experts, reflections [45] (Section 8) on these data already
have meaningful implications for the visualization community.

In the context of the nine-stage framework for design study method-
ology [58], this work represents a full cycle, including many sub-cycles,
of each of the nine stages. We build upon previous visualization and
design study experience at the learn stage to inform careful, deliberate
decisions at the winnow stage, that we discuss in Section 4.2.1. We
observed refinements at the cast stage over time, where deployments
and conversations with domain experts exposed deeper insights into the
various roles that they play in practice. At the discover stage, our tool
enabled insights for our collaborators and ourselves, particularly with
respect to horizontal movements in the task-information space—Atria
drove many discussions about what data needed to be collected that
were unlikely to have occurred without our probe’s involvement. The
simple nature of the tool enabled relatively simple design refinements,
as well as rapid implement and deploy stages. Throughout we use the
term iteratively to describe the repetition of design stages and iteration
to mean each new version of Atria presented to our collaborators, as
marked in green in Figure 1.

In framing our contributions in terms of the nine-stage framework,
it is important to address considerations that it does not capture. We
deployed Atria in very diverse technical and practical contexts, creating
a parallel, multi-channel collaboration environment like that described
in detail by Wood et al. [63]. We did not experience the constraints
described by Crisan et al. [16], but our process also benefited from thor-
ough artifact generation, frequent communication, and staged design.
Our focus in this early phase of a long-term collaboration has been
to elicit robust design requirements, rather than deploying prototypes
too early [44]. Instead, we report on the use of a technology probe to
build, intervene, and evaluate [43], with Sedlmair et al.’s [58] reflect
and write stages applying continuously. As Hinrichs et al. [26] show in
digital humanities, we demonstrate value in the visualization process.
Finally, we contend that, in some cases, it may be beneficial to consider
collaborations where a design study will have an opportunity to impact
how data is collected and how the initial data abstraction is designed.

Task Abstraction. Several methods have been proposed for bridg-
ing low level visualization tasks to more complex goals [10, 39, 55, 64].
Brehmer and Munzner [10] propose composition of low level tasks.
Zhang et al. [64] demonstrate combining hierarchical task analy-
sis [3, 4, 56] with visualization task abstractions. As the data and
concerns evolved, we did not observe stationary tasks at a low enough
level to yet apply these detailed methods meaningfully. However, recog-
nizing the importance of linking goals and tasks, we describe our task
findings in terms of multiple levels. The lower level tasks of high level
goals often overlapped, resulting in a lattice as described in Section 5.

Execution Graph Visualization. Node-link diagrams are prevalent
in execution graph visualization [11, 19, 28, 54]. Dokulil and Katreni-
akova [19] remove edges that can be reached by other paths, plotting
their results with dot [21,22]. DAGViz [28] and Grain Graphs [54] use
aggregation schemes to decrease the number of marks shown, taking
advantage of nesting structures inherent to fork-join models of paral-
lelism, but not present in general tasking models such as ours. Neither
solution is interactive. In contrast, our interactive visualization abstracts
execution graphs to a tree and aggregates based on the source code.

Trace data from tasking models has been visualized with Gantt
charts. Ravel [29] shows the edges in Charm++ traces [35], but these
are a subset of those in the full execution graph. Haugen et al. [25]
show edges connected to a single task on demand. Pinto et al. [51] do
not show edges. We do not have trace data and thus Gantt charts are
inappropriate for our use.

Parallel calling context trees (CCTs) describe caller-callee relation-
ships and are frequently visualized [1, 2, 6, 42, 47]. They differ from
our execution graphs which are at a finer-grain task level and include
dependencies not captured by CCTs. For a survey of visualizations
across parallel computing models, see Isaacs et al. [31].

Tree Visualization. Visualizing a graph as a tree is an established
practice [20,24,32,48,50] to reduce complexity and improve readability,
especially when the tree has a semantic meaning. In our case, we
visualize the edges relating to how the computation is expressed in
code—its expression tree.

To reduce clutter, we collapse subtrees and encode them as triangles,
like SpaceTree [52], but our collapsing strategy is based on meaning in
the source code rather than screen space. Many techniques [14, 40, 46,
52,61] exist for scalable hierarchy visualization. As part of the strategy
of handling evolving data and tasks, we aim to “[satisfy] rather than
optimize” [58] our depiction, but could apply these techniques once
necessary. For a survey of tree techniques, see Schulz [57].

3 TASK PARALLEL PROGRAMS AND EXECUTION GRAPHS

Parallel and distributed programs utilize vast computational resources
to produce results that are often too time-consuming, if not infeasible,
on a single processor. Achieving these time benefits often requires
careful consideration of performance on the part of the programmers.
Understanding observed performance is difficult because of the com-
plexity of the emergent behavior stemming from the source code and
the systems on which they run. The systems include not only the hard-
ware, but the runtime which dictates the execution of the program and
the environment in which it runs.

Performance is affected by several factors including adaptive
scheduling policies that are difficult to predict. Intermediate structures
may be created by the runtime that are not apparent to the program-
mers. Even known structures may be hard to reason about, given the
dynamism in the system.

Asynchronous tasking runtimes (ATRs) are a class of parallel run-
times that have been gaining interest for their potential to increase
resource utilization and overcome performance bottlenecks inherent
to other paradigms. However, due to their more recent prominence,
support for performance analysis of ATRs is still developing.

An Asynchronous Tasking Runtime supports an Asynchronous Many-
Task (AMT) execution model. Typically, these models divide and
encapsulate work (computation) into units known as tasks. The runtime
then schedules the task for execution on one of its distributed resources.
The flexibility to move tasks between resources allows ATRs to take
advantage of parallelism other models may not.



3.1 Execution Graphs

Common to tasking models is the notion of an execution graph. In
an execution graph, each task is a node. The edges are dependencies
between tasks. A task cannot be executed until its dependencies are met.
Tasks without dependencies between each other may run concurrently.
Runtime developers are thus interested in these dependencies and their
effect on scheduling decisions.

Execution graphs may be recorded during program execution. To
reduce collection overhead, tasks of the same type (e.g., same function
name) or with the same provenance (e.g., same function name and
sequence of function names leading to the task) may be aggregated. We
focus on the latter type of execution graph data in this project.

Attribute data is collected for each node in the execution graph.
Typically for performance analysis, the number of times each task type
was run (count) and the total time spent executing instances of that
task are recorded. During our project, attribute data was augmented to
also collect information about what mode the task was executed (see
Section 4) and relation to line of source code.

3.2 Performance Data and Analysis in ATRs

There are many ATRs under active development [5, 8, 15, 17, 34, 35],
but no standardized expectation for what performance-related data is
collected. Existing parallel performance tools like TAU [59] and Score-
P [38] can collect general performance data such as low-level profiles
and traces, but often do not support ATR-specific data such as execution
graphs. Existing execution graph work has often been specific to the
ATR. Exactly what data could and should be collected when analyzing
an ATR is an open area of research.

4 THE PHYLANX PROJECT

We conducted this design study as part of a visualization initiative
in the Phylanx Project. First, we provide technical background of the
Phylanx [60] system necessary to understand our resulting visualization.
We then discuss the organization of the project itself, how it led us to
accept winnowing pitfalls, and the roles we cast in the design study.

4.1 Technical Overview of Phylanx

Phylanx is an actively-developed system for performing array computa-
tions in a distributed fashion. Its purpose is to provide the advantages
of distributed resources (faster time-to-solution and the ability to scale
beyond single-machine memory limitations) to data scientists while
allowing them to use the tools with which they are familiar.

One such tool is Python. Phylanx has a front-end which allows
data scientists to mark which of their Python functions they want
run distributedly. Phylanx then translates the array operations in the
Python code into HPX. HPX [33, 34] is a C++ standard library and
asynchronous tasking runtime.

The average end users need not be concerned with how Phylanx
transforms their code. However, power users interested in performance
and the developers of the Phylanx system are.

Phylanx first translates the code into an intermediate representation
in a domain-specific, functional language called PhySL. The function
calls, control flow operations, data operations, and blocks found in the
PhySL representation are referred to as primitives. These primitives
are translated to tasks in the HPX runtime. The dependencies of each
primitive are the arguments it needs to execute (which may be other
primitives), data access operations, or any other constraints on variables
the primitive uses. The dependencies and primitives form the execution
graph which is run by HPX.

HPX can schedule any instance of a primitive in one of two modes:
synchronous or asynchronous. A synchronous primitive is executed im-
mediately from the primitive that initially spawned it. An asynchronous
primitive is added to an internal work queue and may be executed on
a different processor at some later time. Asynchronously scheduled
primitives give the runtime more flexibility but incur more overhead,
so it is beneficial to execute shorter primitives synchronously.

4.2 Phylanx Project Organization

The Phylanx project comprises three teams, each located at a different
academic institution. The Runtime Team develops the HPX and Phy-
lanx libraries. The Performance Analysis Team develops instrumen-
tation to collect performance data and tools to improve performance.
They also maintain the nightly regression tests and reporting. The Vi-
sualization Team develops visual tools to aid in performance analysis
and debugging. Additionally, a program manager (PM) for the project
seeks out further collaborations and develops data science applications
using the Phylanx system. A list of team members involved in the
design process and their roles is available in the supplemental material.

We discuss the inception and further organization of the project
within the framework of the design study methodology of Seldmair et
al. [58], specifically the winnow and cast phases. We note which pitfalls
were accepted and what other aspects of the project helped mitigate the
negative affects of those pitfalls.

4.2.1 Accepting Winnowing Pitfalls

Prior to the official project start, the Performance Analysis PI and the
Visualization PI had several conversations regarding difficulties in ana-
lyzing ATRs. The Visualization PI had faced the issue of traditional data
collection being insufficient to analyze ATRs [29]. The Performance
Analysis PI expressed difficulty in making sense of the data that could
be collected. He noted there was little point in spending development
resources and overhead on data that could not be analyzed.

These two coupled issues, (1) no data to analyze and (2) no analysis
with which to use to the data, present a “chicken and egg” barrier to
improving understanding and performance of ATRs. The two PIs view
determining what data to collect a research goal of the project.

The data being an evolving target of research, along with the devel-
opment of Phylanx itself and its changing concerns, means the project
runs afoul of two of Sedlmair et al.’s winnowing pitfalls:

PF-4: No Real Data Available (Yet). During the project, the struc-
ture of the data and the format of the data have been evolving. Other
potential sources of data are not yet instrumented. It is difficult to arrive
at a final visual solution without finalized data.

PF-10: No Real/Important/Recurring Task. The fact that the data
is in flux means tasks involving that data are also in flux. Furthermore,
as Phylanx is developing rapidly, the concerns of the team members
change over time, affecting their higher-level goals.

The decision to proceed despite these pitfalls was motivated by the
desire to solve the larger problem of performance optimization and
analysis for ATRs. We view working with preliminary and in-flux data
as a stepping stone to achieving the “data behind the data”—the data
that can only be envisioned with knowledge gained from exploring
what we already know.

There are several factors that help with the continuing success of the
project, despite the pitfalls:

Identification and availability of meaningful preliminary data.
Though the data collection is its own area of research, the PIs foresaw
the importance of the execution graph based on prior work and could
confidently predict it would continue to be useful to understand. We
hypothesized that some tasks would therefore remain stable (see Sec-
tion 5). Furthermore, design did not begin until a preliminary dataset
could be generated.

Strong interpersonal relationships. The cohesion of the three
groups facilitated adaptation to new data. Teams were quick to clarify
or explain changes in format and to react to requests to change. The
trust among the teams allowed the Visualization Team to plan for future
functionality with relatively low risk.

Overarching goal of the project did not change. The high level
goals of performance analysis and optimization, along with the goal of
discovering what data to collect, remained the same, though strategies
employed by the users changed. Thus, high-level goals that are aided
by visualization, such as understanding the execution, remained fixed.

Visualization considered a deliverable by entire project. All
project teams recognize the visualization component as an outcome.
Progress on the visualization is reported at the weekly full-project



teleconference and included in all reports. The success of the project
includes the success of the visualizations.

The incorporation of visualization as a project-wide outcome un-
derscores the continuing approval and enthusiasm communicated by
project gatekeepers, placing them in the High Power-High Interest
quadrant of the matrix proposed by Crisan et al. [16]. Team mem-
bers were not only authorized to spend time on the visualization, but
encouraged to do so. We further discuss project roles below.

4.2.2 Casting Roles: Gatekeepers, Analysts, Experts
The Runtime and Performance Analysis PIs, project manager, and
program manager all serve in the gatekeeper role, with the Runtime
PI and project manager being the most central in allocating time with
front-line analysts. One student was identified as a front-line analyst
early in the project. As the project evolved, several other students with
differing concerns (See Section 7) were cast in the role.

The gatekeepers also acted as front-line analysts. The PIs had similar
technical goals as the students. The project and program managers were
more representative of a second goal—communicating the project to
outsiders. All gave feedback regarding designs throughout the project.

An interesting facet of the project is that almost every person is a
form of tool builder. Sedlmair et al. noted the pitfall of mistaking fellow
tool builders for front-line analysts. Here they are both because a major
goal of the visualization is to help the tool builders in building their
tools. Their role as tool builders furhter helped them accept working
with an in-development visualization (See Section 8).

Some studies have found success in blurring the boundaries between
domain and visualization experts [63]. Our project naturally main-
tained them, further avoiding the pitfalls of working with fellow tool
builders [7]. We found communicating with mock ups and screen shots
was sufficient—users did not need to learn the language of visualization.
Furthermore, as the other teams trusted in the visualization expertise of
the designers, they accepted change in the design over time.

5 TASK ANALYSES

We had three objectives in designing our visualization. We wanted
to (1) support the analysis needs of our collaborators, (2) refine data
collection and analysis for tasking models, and (3) prepare for future
needs given the refined data collection and the progress of the Phy-
lanx project. Through our multi-year collaboration, we assessed needs
through general project meetings, focused visualization and perfor-
mance analysis meetings, and informal interviews. From these, we
developed a goal-to-task lattice ( Fig. 2), which we updated as needs
shifted. We elaborate on this process and present the lattice below.

The project had weekly status meetings where all teams gave updates
on the progress of individual components. Emerging problems were
briefly discussed, but scheduled for another meeting if necessary. There
was an optional meeting slot to discuss performance analysis and visu-
alization specifically when requested. We wrote notes from both these
meetings, including subjects not directly related to the visualization.
We also had face-to-face meetings twice a year, once at another team’s
site and another at a conference in high performance computing.

Through the present, we created 152 note files with a mean 2800
characters per file. Some contractual information prevents us from
releasing the complete audit trail [13] at this time, but anonymized
summaries of our task analyses, with relationships between specific
note files and the goal-to-task lattice are included as supplemental
material. The project manager also compiled regular notes from the
perspective of the Runtime team which augmented our understanding
of the full project status and aided in our planning.

Tasks regarding the execution graph were derived from the note files
by two authors independently who then developed a lattice spanning
from high level goals to low level tasks using affinity diagramming.
We classify these as umbrella concerns (U1 - U3), goals (G1 - G6),
sub-goals (S1 - S6), and tasks (T1 - T6).

5.1 Umbrella Concerns
We use the term umbrella concerns to describe the major classes of
goals we found our users had with respect to visual analysis. Some

goals fell under multiple umbrella concerns.
U1. Program Comprehension. Our collaborators want to under-

stand what happened when the program was executed. Many were
working on a specific piece of the Phylanx pipeline and did not have a
concrete mental model of how the translation from code to execution
graph took place, nor a sense of the intermediate PhySL representation.
Although previous work found that computing researchers may consult
graphs to debug their mental model [18], we found some of our collab-
orators wanted to build their mental model. This is often a first step to
devising new strategies, debugging, or performance analysis.

U2. Performance Analysis. An impetus for moving to tasking
runtimes is the potential for high performance—decreasing the time to
solutions and/or making previously infeasible computations feasible.
Thus, understanding and improving the performance of a given Phylanx
application or the system itself was a driving concern.

U3. Communication. Our collaborators wanted to create figures
to help explain their own research in publications. The project and
program managers were interested in explaining to potential users how
the Phylanx system works. Such users often already have a background
in parallel computing and thus can interpret the visualization when
presented by someone from the team.

5.2 Goal-Task Lattice
We identified six goals relating to the execution graph and our umbrella
concerns, some of which could be divided into smaller sub-goals. We
discuss each goal and relate it to low-level tasks. We then summarize
the tasks pulled from our goals.

G1. Overview of Execution. All three umbrella concerns wanted
some sort of overview of what happened during the execution, in
particular, the size and shape of the execution graph and how many
times each node was executed. This goal can be divided into tasks
of gaining a graph overview (T1), following dependencies (T2), and
finding substructures (T3). For example, our collaborators explained
that the visualization should allow them to understand if something
was called recursively. This can be done by following a cycle of
dependencies in the aggregated execution graph.

G2. Relate to Code. While the execution graph describes how
the runtime executes the program, our collaborators cannot directly
change the graph itself, only the associated source. Thus, they want to
know the relationship between the code and the graph for both program
comprehension and performance analysis concerns. We divide this into
two sub-goals: (1) finding the line of code related to a node in the graph
and (2) finding the nodes in the graph related to a line of code. The
latter we categorize as a task of finding a subset of nodes (T4).

G3. Understanding Timing Information. Central to the Perfor-
mance Analysis concern is data recorded about time spent executing
each node. Of particular interest is finding parts of the execution that
took a long time or behaved in an unexpected way, leading us to identify
sub-goals of: (1) finding hot spots, (2) finding hot paths, and (3) finding
timing anomalies. Hot spots are nodes that executed for a long time.
Hot paths are sequences of such nodes.

Later in the project, as our collaborators progressed from the initial
development of their applications to performance optimization, a fourth
sub-goal, (4) comparing performance between runs, was discovered.
We added it when we revisited our goal-task lattice.

All of these sub-goals require finding a subset of interesting nodes
(T4) and analyzing attribute data of those nodes (T5). The hot paths sub-
goal also requires following dependencies (T2). The timing anomalies
sub-goal may further involve identifying substructures in the graph
(T3) and understanding an overview (T1). The comparison sub-goal
requires comparing attribute data (T6).

G4. Understand Runtime Decisions. A key feature of tasking
runtimes is built-in support for adaptively altering execution based on
runtime data to improve performance. Our collaborators want to know
what choices were made and the effect on performance, making this a
Performance concern. An example of this goal is the choice of execu-
tion mode as described in Section 4.1. Similar to G3, understanding
runtime decisions is aided by finding a subset of interesting nodes (T4)
and analyzing node attribute data (about runtime parameters) (T5). As



Fig. 2. A goal-to-task lattice, showing the relationships between high-level umbrella concerns (U1 - U3); more specific goals (G1 - G6) and sub-goals
(S1 - S6); and low-level tasks (T1 - T6) that directly inform the design of a visualization interface. The comparison sub-goal and task were added as
data and concerns evolved. G5 was identified as a future goal based on project priorities in collecting and analyzing the data.

decisions are related to dependencies, following dependencies (T2) is
another task. Also like G3, we updated the tasks for this goal with
comparison (T6) as the objectives of our collaborators shifted.

G5. Understand Utilization. The primitives represented by the
execution graph as nodes must be scheduled to run on computing
resources. Researchers are interested in maximizing the utilization of
those resources—spending less time idling and more time doing useful
work. Thus, this was another Performance concern. However, neither
examining this data nor the capability to associate utilization data with
the execution graph was a development priority for our collaborators
over the other goals. We thus included it in our goal-task lattice as a
possible future node, with references to notes on the matter so we may
look back on them should utilization become a more pressing concern.

G6. Export/Save. Supporting the Communication concern, our
collaborators requested a mechanism for exporting and saving the
visualization.

From the goals, we collect six low-level tasks. We list them here
followed by their relationship to the task taxonomy for graphs of Lee
et al. [41].

T1. Overview (4.4 Overview)
T2. Follow Dependencies (4.1.1 Adjacency, 4.3.1 Follow Path)
T3. Find Substructures (5 Higher Level Tasks)
T4. Find Subsets (4.2.1 Node Attribute Tasks)
T5. Analyze Node Attributes (4.2.1 Node Attribute Tasks)
T6. Compare (4.2.1 Node Attribute Tasks, 5 Higher Level Tasks)

The presence of topology-based (finding adjacencies) and browsing
(follow path) tasks when understanding dependencies motivates our
use of visual representations that explicitly encode edges.

While there are several node attribute tasks, we note that we have
relatively few attributes—timing data and mode of execution. This
motivates our design decision to use on-node encoding, as it is easily
understood by most users [49].

5.2.1 Evolution of the Goal-Task Lattice
We remark that our task analysis remained stable through multiple
revisions. Later notes tended to reinforce goals and sub-goals already
in the lattice. This may be due to the central need for comprehension
of the execution as a starting point for any other goal. We hypothesize
this relative stability over time contributed to the success of the visual-
ization, despite the evolution of the data and the shift in focus towards
comparison.

6 VISUALIZATION DESIGN

Atria (Fig. 3), was designed and developed iteratively as data became
available. We describe our design choices and explain how the evolving
data, tasks, and environment influenced our design decisions.

The central view of Atria is the execution graph, visualized as a
node-link tree. We explain this choice along with the choice of attribute
encodings. We then describe the auxiliary linked views.

Throughout its development, Atria has served several purposes: (1)
an initial validity check on data generated, (2) a visual tool supporting
our collaborators in their evolving tasks (Section 5), and (3) a platform
for hypothesizing about what new data to collect to help with the
analysis. In support of these concerns, deployment of a working version
was a priority. Matching the evolution of project concerns, we strongly
embraced the advice [58] of satisfying needs rather than optimizing
them. We describe the effect of these deployments on design, including
significant changes for Jupyter Notebooks (Section 6.4).

6.1 Execution Graph
An execution graph is a directed acyclic graph of tasks describing
the dependencies that must be met before any task (primitive) can
be executed (Section 4). Rather than show all edges in the graph, we
display a subset of the edges and lay out the graph as a tree. Specifically,
we represent the execution graph as an expression tree.

In an expression tree, each node is an operation and its children are
its operands. In Atria’s graph view, each node is a primitive, which may
be a simple or complex operation, and each child is an operand to that
primitive as described by the PhySL intermediate representation. Fig. 4
shows a small example. We chose to prioritize expression tree links
because of their relation to the PhySL code and to descriptions of the
Phylanx model we had gathered from discussions with collaborators
and their presentations.

Our collaborators’ interest in the expression tree abstraction drove
the evolution of the data collection. First, we collected only expression
tree data. We created three interactive tree visualizations using icicle
plots, node-link diagrams, and indented trees. Each allowed collapsing
of sub-trees into single marks (triangles in our node-link tree). Within
a few months, it became clear from viewing only the expression tree
that there are cases where the execution graph is needed for analysis.

We created mock ups showing a full-graph node-link diagram as
well as options for augmenting the tree visualizations with the extra
edges. Our collaborators uniformly preferred the tree layout. We
then decided to focus on the node-link representation (using D3’s [9]
Reingold-Tilford [53] layout) for the tree because that early visualiza-
tion received the most use; node-link diagrams are already prevalent
in the computing space [30]; and studies have shown the utility of
node-link representations for path following tasks [23, 36] i.e., T2.

Mindful to avoid premature design commitment, we revisited the
choice of tree representation later with a collaborator not involved
earlier. He strongly preferred the node-link tree, saying “Whenever we
were learning algorithms or something like that, we would draw it like
that. It’s more comfortable because we’re more used to it and we can
more easily see what’s going on...Although the one in class might be



Fig. 3. The design of Atria. The main view represents the expression tree contained in the execution graph. (A) Triangles represent collapsed
subtrees. (B) Elided links are shown on hover. (C) Fill color and border style encode time and execution mode respectively. (D) Users can toggle
between showing inclusive and exclusive time. (E) Tooltips provide details on hover. (F) Code view with linked line of code highlighting. (G) Primitives
listed by execution time. (H) If multiple runs are available, comparative mode may be enabled.

Fig. 4. The expression tree of transx · (pred−y−x).

drawn top down though.” We chose the horizontal aspect ratio because
most displays have more horizontal space.

This familiarity with node-link diagrams can further help users in
identifying substructures (T3). The trade off is that node-link diagrams
are not compact. Users had to zoom or scroll to gain an overview (T1).

Elided Structure and Interaction. By showing only the expression
tree as dictated by the PhySL, we have removed two classes of edges:
(1) dependencies between multiple accesses of the same variable, and
(2) dependencies between multiple uses of the same function call.
These are not usually needed for our users’ goals. To support a more
detailed analysis if necessary, we show them in a node-centric manner
on demand. When a user hovers over a node, the edges are overlaid in
yellow to be non-obtrusive.

Some sub-structures in the tree are common but rarely of interest to
our collaborators. To de-clutter the visualization, we use two strategies.
First, we automatically collapse sub-trees for a known set of “uninter-
esting” primitives. Second, for the on-demand links, we omit edges
between library functions (e.g., add) as these do not communicate
the structure of the application, but lower level information about the
runtime that our collaborators do not expect to be of use.

Node Attribute Encodings. As timing and runtime decisions tie
directly into our collaborators’ goals (G3, G4), in particular task (T5),
we encode timing and execution mode on-node. Execution time is
encoded in the node’s fill saturation, allowing users to find groups of
nodes with similar timing in context (T3, T4). Execution mode is shown

in the border’s line style. The exact time and name of execution mode,
as well as other attributes such as the execution count, are provided in
a tooltip on node hover further supporting T5.

Users can switch between two concepts of execution time. Inclusive
time is the wall-clock time taken for the primitive to execute. Exclusive
time subtracts from the primitive any time that can be attributed to
waiting on its children. Our collaborators are interested in both.

6.2 Auxiliary Views
A collapsible linked view displayed the PhySL code to support G2,
relating to code. Sub-goals S1 and S2 are implemented as linked high-
lighting. The code view auto-scrolls on node hover. We experimented
with showing the related C++ or Python, but PhySL was preferred.

To support S3, finding hot spots, we have a collapsible list view
which shows the tree primitives from most time-consuming to least
with colored bars matching the on-node time encoding. The view is
similar in design to that of Intel’s VTune, which is used by several
of our collaborators. VTune works at a lower-level of abstraction and
cannot list by primitive.

6.3 Designing for Comparison
During our design study, some of our collaborators began exploring
the effect of adaptive policies that change execution modes at runtime.
They make changes to these policies between runs and wish to compare
the results. They reported opening multiple Atria instances. In response
we added a comparison mode.

Discussions after we proposed a comparison view indicated that our
collaborators only compare two runs at a time, allowing us to calculate
a simple derived value. For timing comparison, we change the node
fill from execution time to execution time difference using a diverging
color scale. For execution mode comparison, we highlight (magenta)
the borders of primitives that were executed differently between runs
but keep the line-style encoding of the first dataset. These encoding
changes support the discovery of interest subsets of nodes (T4) and
their comparison (T6).



When only policies are changed, the structure of the tree does not
change. However, when the application code or Phylanx changes, the
tree structure will change. As Phylanx is under active development, we
observed small topology changes every few weeks. When we observe
nodes that are not present in both trees and thus cannot be compared,
we draw them with lowered opacity, similar to the approach employed
by Campello et al. [12]. So far topology comparison has not been a
focus of our collaborators.

6.4 Design Changes for Deployment
Our primary Atria audience uses a web-based deployment. As the data
collection, output, and use scenarios evolved, we created several design
variants, resulting in multiple similar deployments, described in the
supplemental material.

Output and collection changes, made by the Runtime team, were
driven by visualization goals, specifically: (1) integration of Atria with
automated nightly regression tests and (2) a full application-to-analysis
demonstration in Jupyter, requested by team members with external
communication goals (U3). We discuss changes for the latter below.

6.4.1 Atria in Jupyter
Jupyter Notebook is an interactive coding environment supporting
literate programming. Users enter code into input cells that can be
run (and re-run) to produce output cells. Variables persist through
multiple input cells. Jupyter Notebooks are one of Phylanx’s front-
ends, available through Docker containers. The front-end is important
to the project due to the ease and portability of container installation
combined with the prevalence of Jupyter in the data science community.

Fig. 5. Atria in Jupyter Notebook. Cell 4 is Python code that uses
the Phylanx library. The newly-generated performance data and tree
are passed in Cell 5. Atria is loaded and displayed in Cell 6, with the
generated PhySL shown in the bottom left and the details of the hovered
node shown in the bottom right.

The project and program managers give Phylanx demonstrations
through this front-end and thus wanted Atria integration to help explain
the programming model. Once we had an initial Jupyter pipeline in
place, we found additional users who wanted to test out small code
snippets and see the effects. An example notebook is shown in Fig. 5.
The export/save (G6) functionality was prioritized as users wanted to
further share results.

The Jupyter Notebook interface imposed an additional space con-
straint on Atria, decreasing the width to ≈ 60% of the browser. Nor-
mally our users can devote an entire display to the visualization. We
modified Atria’s layout of auxiliary views to prioritize visibility of the
graph. Tool tip data was moved to a fixed position in the bottom right
so it did not obscure the graph or legend.

We decreased the size of the code view and placed it in a floating
window in the bottom left. It shows three lines of code, which we de-
termined was enough context for our users during formative evaluation.
Users can output the full PhySL to a separate Jupyter cell, which was

Fig. 6. Comparison between two runs of the same application with
different policies. Pink-outlined nodes indicate a difference in execution
mode between two runs. The orange node ran slower after the policy
change, but the net affect on the parents was positive.

done during demonstration. The Jupyter interface itself thus acted as
another (full) code view, available via scrolling.

Jupyter is hosted in a web environment with its own structure, styling,
and handling of Javascript. This posed technical challenges in embed-
ding our Javascript visualization in a cell in a maintainable manner. We
view streamlining of this process as an avenue for future work.

7 EVALUATION

We evaluate Atria and its inclusion in the Phylanx project through case
studies gathered during deployment and evaluation sessions. Additional
figures describing the evaluation and a video showing the case study of
Section 7.1.1 are included as supplementary material.

7.1 Deployment Case Studies
As described in Section 6.4, we prioritized deploying versions to our
collaborators, creating several variants during the project. Additionally,
the program manager created a variant for his workflow at a secure
facility. Data collection and design streamlining done for earlier de-
ployments made this last deployment possible.

We polled our collaborators for their non-evaluative uses of Atria
every few months. R3 consistently reported using Atria as described
below. One other student reported using it actively when they were
working on a particular algorithm, but has since changed objectives
and does not presently use it. The program manager reported using it
sporadically to explain the project to others. In the evaluation sessions
(Section 7.2), four participants report using it minimally.

We describe two case studies. The first shows how Atria is used
regularly in Phylanx development. The second describes how Atria
was used in a reactive situation to aid in reasoning and how the Atria
development process influenced the performance debugging process.

7.1.1 Atria in Regular Use
Our primary frontline analyst, R3, began using the deployed version
of Atria within a few months of the start of design in January 2018.
He reported using the visualization on average once a week, more
frequently when actively debugging.

He first runs the application he wishes to examine, generating the
data used by Atria. He copies the files to a local directory and opens
Atria from the command line. He considers the overall shape of the
tree, noting that nodes with similar depth may be candidates to run
concurrently. Then, he considers a particular primitive and its children
to examine how the timing and execution of the children may have
affected the parent as shown in Fig. 6.

Using his gained intuition, R3 makes a change in the Phylanx policy.
He changes the thresholds that determine whether a primitive will be
run synchronously or asynchronously. He runs the program with the
new policy and collects data. Using Atria, he compares the two runs
to see which of the primitives changed their execution policies and
whether that caused them to run faster or slower. As the policy change
is global and timing changes may have non-local scheduling effects, he



Fig. 7. Comparison between two ALS runs, before and after a significant
slowdown. As hypothesized by the Runtime PI, there would be a slight
increase in execution time on average for the slower run (blue).

browses the entire tree. He uses his findings to inform the next iteration
of policy development.

When explaining his workflow to us, R3 said “Also it’s that I want
to be able to visualize it [the algorithm], just seeing it implants it in my
mind.” He explained that he is a visual person and Atria makes it easier
to think about the problem.

7.1.2 Investigation of Performance Regression
A significant slowdown in Phylanx’s alternating least squares (ALS)
application was discovered through nightly regression tests. The project
manager (R2) suggested using Atria to compare runs before and after
the performance drop.

The regression tests ran with a large and a small dataset. Atria
data was collected only for the small run and showed no odd behavior,
indicating further examination of the larger run was required. As a
test dataset, the visualization team collected data using the older (pre-
slowdown) code on a different cluster. No performance difference was
observed, indicating the behavior was machine-specific.

The Performance Analysis PI (P1) then collected the larger run data
on the regression machine. He discovered the problem was due to a
change at the HPX level. He suggested it would therefore not be visible
in Atria. The Runtime PI (R1) hypothesized it would show up as a
10-30% increase in all primitives on average. We used Atria to compare
the two versions (Fig. 7) and found R1’s hypothesis to be correct.

Atria did not pinpoint the source of the problem, but was used to
narrow the space of possibilities and then confirm understanding of
lower level effects on the application. Furthermore, the involvement
of Atria motivated deeper examination of the problem and the data
collection that led to discovery of the root cause which was then fixed.

7.2 Evaluation Sessions
We conducted evaluation sessions of Atria with seven members of
the Runtime Team (R4–R10). R10 had no prior experience. Some
had seen Atria briefly (R5, R6, R8, R9), though R8 only remembered
after completing the tasks and R9 had only seen a picture. Two (R4,
R7) had previous influence on design. Sessions were conducted at the
participant’s workstation, with the exception of two (R6, R7) which
were done in a nearby meeting area.

We began our evaluation sessions with a demonstration and feature
overview using a small example. Participants could use Atria and ask

questions. We then asked users to perform a series of tasks on a dataset
generated from a Phylanx application with which they were not familiar.
We followed up with a semi-structured interview and de-briefing.

7.2.1 Evaluation Sessions: Tasks

We asked the following evaluation tasks, each marked with its corre-
sponding goal from Section 5. Tasks L1–L4 are for a lone run. Tasks
C1–C2 are for comparative runs.

L1: Find a primitive that takes a lot of time. (G3)
How long does it take without its children? With? (G3)

L2: Find a primitive that is executed synchronously (G4)
L3: Find a primitive that is executed asynchronously (G4)
L4: Find a primitive that is repeated in the code (G1)
C1: Which run was slower? (G3),

*Why might it have been slower? (G1, G2, G3, G4)
C2: Find a primitive that changed execution mode. (G4)

Explain the change. (G4)

Five of the participants were able to complete the L1 tasks within
seconds, doing a visual search for the most saturated nodes and then
reading the exact numbers from the tool tip. R5 attempted to use the
list view, but it wasn’t yet linked. They also required a reminder of the
encoding before completion. R10 had difficulty and seemed to be still
learning the visualization.

All participants were able to complete L2 within seconds. However,
in L3, four the participants took tens of seconds. We believe this was
because there was only one correct answer for L3 in the sample data.
L4 was also completed by all participants, though two (R7, R10) asked
for clarification.

In the comparison tasks, all participants answered which run took
longer (C1), with many verbally reasoning about the colors. However,
in two cases (R4, R5), the phrasing of the question accidentally in-
cluded the follow-up hint. In finding the changed execution (C2), all
participants with the exception of R8 completed the task, though two
asked that the encoding be re-explained. While the other participants
seemed to browse for a node, R8 flipped between the comparison and
non-comparison mode, appearing to search for line style changes.

C1* was a higher level analysis task that required performance
analysis background, thus we only asked it of participants who indicated
they performed such analysis in their duties (R5–R7). Each pointed out
highly saturated nodes of the slower run’s color as contributing to the
slowness and noted in particular a store primitive was among them.
R7 suggested that since the store took a lot of time, the program might
be memory-intensive. R5 noted he had outside knowledge—that the
store primitive had been modified recently—and concluded the data
might represent the performance change due to that modification.

Throughout the tasks, we noticed a few common themes in the in-
teraction. In most cases, participants appeared to use the encodings
and interactions as intended. A few verbalized their rationale. Several
participants consulted the legend in solving tasks (R6, R8, R10). Diffi-
culties arose in discerning the line borders (R4, R10) and in evaluating
the last hovered node which remained yellow (R4, R5, R7).

7.2.2 Evaluation Sessions: Interviews

We conducted semi-structured interviews with participants, asking if
there were any features they found useful and what they would like the
visualization do that it could not already. If participants indicated they
had used the visualization before, we asked them how they used it.

Regarding utility, two participants said they didn’t know whether the
features would be helpful or not (R6, R9). The remaining participants
each listed several components of Atria, but there was little consensus
among them. Repeated features included: access to timing data (P4,
P5, P7), the linked code view (P4, P5, P8), the comparison view (P4,
P5, P9), and links between dependencies (P5, P7, P8). Suggestions for
improvement included differentiating primitive types (e.g., variables,
functions, control-flow) (R6, R7) and more de-cluttering of the node-
link tree (R6, R7).



Three participants (R4–R6) said they used a previous deployment to
draw figures for a paper [60, 62] or report. R8 said they used it to view
the structure of codes they were not familiar with and see timing data.

7.2.3 Evaluation Sessions: Discussion
In general, participants performed well on the evaluation session tasks
with indications that our encodings were used to complete them. Most
evaluation tasks were short as they were constrained by session length,
but we consider them necessary to establish basic usability and to
engage participants for the interviews.

The least experienced participant, R10, struggled with several tasks.
R10 had just begun learning how to code. Our goal-task lattice focused
on expert analysis or communication led by an expert, which may
explain these observations.

The participants who performed the high level task, hypothesizing
why one run was slower, showed a combination of reasoning including
identifying hot spots (G3) and relating knowledge about code (G2).

The sessions also revealed confusion in the execution mode encod-
ing. It was a recent change to support the new undecided mode. We
attempted to preserve the previous encoding of solid and dashed bor-
ders with undecided being in between to match semantics. We are now
reconsidering this choice. The confusion reveals a design challenge
due to the shift in what we could assume about the data and a trade off
with consistency with prior encodings.

We attempted to keep the interview question regarding useful fea-
tures unbiased. We first asked if there are any features that were useful,
stating that no and I don’t know were helpful answers. Even still, we
suspect participants were predisposed to answer positively. Though
potentially biased, we were surprised by the variance in which features
the participants found potentially useful.

We hypothesize this variance is due to the differing concerns of the
participants. Some were starting to consider comparative performance
analysis. Some were focused on development of specific Phylanx
features or example applications. The two participants who answered
they didn’t know are focused on developing interfaces between existing
libraries and Phylanx. They are not working on the execution of the
task graph itself or on applications that decompose into the graph. The
other participants do but in different contexts, perhaps leading to their
difference in feature preferences.

8 REFLECTION AND LESSONS LEARNED

We discussed earlier (Section 4.2.1) the importance of the respect the
Phylanx teams have for each other and the positioning of the data
collection and visualization as goals of the project as a whole. These
themes carry through several of the other lessons we learned throughout
the project thus far. We discuss these lessons below.

When designing for a moving target, seeking to satisfy rather
than optimize is essential. Recognizing that we were managing Sedl-
mair et al. [58] pitfall PF-10, No Real/Important/Recurring Task, we
focused strongly on satisfying needs and deploying. We took a “wait
and see” approach with optimizing particular encoding choices and
functionality, not wanting to expend effort on features that might not
last. This mindset also helped avoid pitfall PF-20, Premature Design
Commitment as we espoused the changing nature of the data and project.

Similarly, our rapid deployments often contained UI bugs. These
primarily decreased usability but did not change the meaning of the
data—again satisfying rather than optimizing. We believe these were
accepted by our collaborators because of the nature of active develop-
ment throughout the whole project. The Visualization team reported
runtime bugs to the Runtime team (opening tickets on Github), so the
Runtime team naturally reported bugs with the visualization.

Task analysis and long-term corpus of notes help clamp down
on reactivity. The design of Atria was part anticipatory and part re-
actionary. Both have risks. Anticipatory design may miss the mark.
Reactionary design may support too short-lived a target. By grounding
ourselves in a long history, we were able to judge any major addition
in the context of long-term concerns.

Jupyter notebooks impose additional design constraints, but
open a wealth of interaction opportunities. Of our deployments,

Jupyter has required the most design changes and we foresee more
as its use increases. While the space constraints are greater, the cell-
based interface could augment or change how we develop and integrate
interactive visualizations for use in this data science space. Our cur-
rent design depends on non-visualization cells and scrolling to match
functionality with our web version. This has worked well so far, but
further development of design guidelines for interactive notebook envi-
ronments are needed.

Rapid changes combined with multiple deployment targets in-
cur a maintenance burden. While multiple deployments gave us
many potential users and their diverse viewpoints, they imposed a de-
velopment burden on the Visualization team. Each deployment is in a
separate git branch and requires some manual effort when applying
changes. We plan to delve further into how we can organize our code
and development practices to decrease this burden.

Both the visualization and the design study process aided our
collaborators in accomplishing their goals and helped establish a
culture of data review. It can be difficult to discern whether it was a
particular visualization that led to an insight, or the fact that anyone
was looking at the data at all, especially in studies where visualization
was not already in the domain experts’ workflow.

The integration of the Visualization team and the design process
made data collection and review a central priority. The dialogue be-
tween the teams and the rapid response to data exposed data collection
bugs or mis-assumptions early. As seen in our regression case study
(Section 7.1.2), the intervention of the design process worked in tandem
with a specific analysis problem to reach a solution.

We recommend further examination of the benefits of visualization
as an intervention, particularly with respect to developing best prac-
tices surrounding a culture of data review. Based on our experience,
we attribute our success to the project organization from both sides.
The rest of the project viewed the Visualization aspects as first class
deliverables. In turn, as key members of the project, the Visualization
team was also fully invested in other aspects of the project. Although
this investment brings certain risks, its rewards include deep insights
and impacts that are otherwise unavailable.

9 CONCLUSION

We presented a design study in the presence of the potential pitfalls
regarding lack of data availability or task recurrence. The visualization
outcome and the insights it supports have not been the only benefit to
our domain collaborators. The design process itself and the integration
with the visualization efforts have been beneficial, especially as an
avenue for refining data collection and analysis practices. One of the
goals of the collaboration is to research what data needs to be collected
for asynchronous tasking runtimes. The evolution of the data has been
in response to intuition gained in analysis. The process has also resulted
in rapid verification of collected data and insights into current problems
that we anticipate will form a strong foundation for the on-going, long-
term design study.

Although we accepted some pitfalls as part of the project, several
factors aided us in managing them. Project organization was a large
factor—teams had respect for each others’ expertise, met regularly,
valued each others’ time and deadlines, and viewed the contributions of
all teams as project deliverables. The high level of participation resulted
in a large corpus of design data collected both by the Visualization team
and the Runtime team. This documentation was revisited frequently,
both formally, through revising the task analysis, and informally, to
guide design efforts, avoiding ephemeral needs. Acknowledging that
the data and tasks were in flux, our technology probe, Atria, satisfied
those needs while keeping the focus on learning what data and tasks
supported analysis rather than finalizing a tool design.
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